Metamath Proof Explorer


Theorem odf1o1

Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)

Ref Expression
Hypotheses odf1o1.x X=BaseG
odf1o1.t ·˙=G
odf1o1.o O=odG
odf1o1.k K=mrClsSubGrpG
Assertion odf1o1 GGrpAXOA=0xx·˙A:1-1 ontoKA

Proof

Step Hyp Ref Expression
1 odf1o1.x X=BaseG
2 odf1o1.t ·˙=G
3 odf1o1.o O=odG
4 odf1o1.k K=mrClsSubGrpG
5 simpl1 GGrpAXOA=0xGGrp
6 1 subgacs GGrpSubGrpGACSX
7 acsmre SubGrpGACSXSubGrpGMooreX
8 5 6 7 3syl GGrpAXOA=0xSubGrpGMooreX
9 simpl2 GGrpAXOA=0xAX
10 9 snssd GGrpAXOA=0xAX
11 4 mrccl SubGrpGMooreXAXKASubGrpG
12 8 10 11 syl2anc GGrpAXOA=0xKASubGrpG
13 simpr GGrpAXOA=0xx
14 8 4 10 mrcssidd GGrpAXOA=0xAKA
15 snidg AXAA
16 9 15 syl GGrpAXOA=0xAA
17 14 16 sseldd GGrpAXOA=0xAKA
18 2 subgmulgcl KASubGrpGxAKAx·˙AKA
19 12 13 17 18 syl3anc GGrpAXOA=0xx·˙AKA
20 19 ex GGrpAXOA=0xx·˙AKA
21 simpl3 GGrpAXOA=0xyOA=0
22 21 breq1d GGrpAXOA=0xyOAxy0xy
23 zsubcl xyxy
24 23 adantl GGrpAXOA=0xyxy
25 0dvds xy0xyxy=0
26 24 25 syl GGrpAXOA=0xy0xyxy=0
27 22 26 bitrd GGrpAXOA=0xyOAxyxy=0
28 simpl1 GGrpAXOA=0xyGGrp
29 simpl2 GGrpAXOA=0xyAX
30 simprl GGrpAXOA=0xyx
31 simprr GGrpAXOA=0xyy
32 eqid 0G=0G
33 1 3 2 32 odcong GGrpAXxyOAxyx·˙A=y·˙A
34 28 29 30 31 33 syl112anc GGrpAXOA=0xyOAxyx·˙A=y·˙A
35 zcn xx
36 zcn yy
37 subeq0 xyxy=0x=y
38 35 36 37 syl2an xyxy=0x=y
39 38 adantl GGrpAXOA=0xyxy=0x=y
40 27 34 39 3bitr3d GGrpAXOA=0xyx·˙A=y·˙Ax=y
41 40 ex GGrpAXOA=0xyx·˙A=y·˙Ax=y
42 20 41 dom2lem GGrpAXOA=0xx·˙A:1-1KA
43 19 fmpttd GGrpAXOA=0xx·˙A:KA
44 eqid xx·˙A=xx·˙A
45 1 2 44 4 cycsubg2 GGrpAXKA=ranxx·˙A
46 45 3adant3 GGrpAXOA=0KA=ranxx·˙A
47 46 eqcomd GGrpAXOA=0ranxx·˙A=KA
48 dffo2 xx·˙A:ontoKAxx·˙A:KAranxx·˙A=KA
49 43 47 48 sylanbrc GGrpAXOA=0xx·˙A:ontoKA
50 df-f1o xx·˙A:1-1 ontoKAxx·˙A:1-1KAxx·˙A:ontoKA
51 42 49 50 sylanbrc GGrpAXOA=0xx·˙A:1-1 ontoKA