| Step |
Hyp |
Ref |
Expression |
| 1 |
|
odf1o1.x |
|
| 2 |
|
odf1o1.t |
|
| 3 |
|
odf1o1.o |
|
| 4 |
|
odf1o1.k |
|
| 5 |
|
simpl1 |
|
| 6 |
1
|
subgacs |
|
| 7 |
|
acsmre |
|
| 8 |
5 6 7
|
3syl |
|
| 9 |
|
simpl2 |
|
| 10 |
9
|
snssd |
|
| 11 |
4
|
mrccl |
|
| 12 |
8 10 11
|
syl2anc |
|
| 13 |
|
simpr |
|
| 14 |
8 4 10
|
mrcssidd |
|
| 15 |
|
snidg |
|
| 16 |
9 15
|
syl |
|
| 17 |
14 16
|
sseldd |
|
| 18 |
2
|
subgmulgcl |
|
| 19 |
12 13 17 18
|
syl3anc |
|
| 20 |
19
|
ex |
|
| 21 |
|
simpl3 |
|
| 22 |
21
|
breq1d |
|
| 23 |
|
zsubcl |
|
| 24 |
23
|
adantl |
|
| 25 |
|
0dvds |
|
| 26 |
24 25
|
syl |
|
| 27 |
22 26
|
bitrd |
|
| 28 |
|
simpl1 |
|
| 29 |
|
simpl2 |
|
| 30 |
|
simprl |
|
| 31 |
|
simprr |
|
| 32 |
|
eqid |
|
| 33 |
1 3 2 32
|
odcong |
|
| 34 |
28 29 30 31 33
|
syl112anc |
|
| 35 |
|
zcn |
|
| 36 |
|
zcn |
|
| 37 |
|
subeq0 |
|
| 38 |
35 36 37
|
syl2an |
|
| 39 |
38
|
adantl |
|
| 40 |
27 34 39
|
3bitr3d |
|
| 41 |
40
|
ex |
|
| 42 |
20 41
|
dom2lem |
|
| 43 |
19
|
fmpttd |
|
| 44 |
|
eqid |
|
| 45 |
1 2 44 4
|
cycsubg2 |
|
| 46 |
45
|
3adant3 |
|
| 47 |
46
|
eqcomd |
|
| 48 |
|
dffo2 |
|
| 49 |
43 47 48
|
sylanbrc |
|
| 50 |
|
df-f1o |
|
| 51 |
42 49 50
|
sylanbrc |
|