Description: An element with zero order has infinitely many multiples. (Contributed by Stefan O'Rear, 6-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | odf1o1.x | |
|
odf1o1.t | |
||
odf1o1.o | |
||
odf1o1.k | |
||
Assertion | odf1o1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | odf1o1.x | |
|
2 | odf1o1.t | |
|
3 | odf1o1.o | |
|
4 | odf1o1.k | |
|
5 | simpl1 | |
|
6 | 1 | subgacs | |
7 | acsmre | |
|
8 | 5 6 7 | 3syl | |
9 | simpl2 | |
|
10 | 9 | snssd | |
11 | 4 | mrccl | |
12 | 8 10 11 | syl2anc | |
13 | simpr | |
|
14 | 8 4 10 | mrcssidd | |
15 | snidg | |
|
16 | 9 15 | syl | |
17 | 14 16 | sseldd | |
18 | 2 | subgmulgcl | |
19 | 12 13 17 18 | syl3anc | |
20 | 19 | ex | |
21 | simpl3 | |
|
22 | 21 | breq1d | |
23 | zsubcl | |
|
24 | 23 | adantl | |
25 | 0dvds | |
|
26 | 24 25 | syl | |
27 | 22 26 | bitrd | |
28 | simpl1 | |
|
29 | simpl2 | |
|
30 | simprl | |
|
31 | simprr | |
|
32 | eqid | |
|
33 | 1 3 2 32 | odcong | |
34 | 28 29 30 31 33 | syl112anc | |
35 | zcn | |
|
36 | zcn | |
|
37 | subeq0 | |
|
38 | 35 36 37 | syl2an | |
39 | 38 | adantl | |
40 | 27 34 39 | 3bitr3d | |
41 | 40 | ex | |
42 | 20 41 | dom2lem | |
43 | 19 | fmpttd | |
44 | eqid | |
|
45 | 1 2 44 4 | cycsubg2 | |
46 | 45 | 3adant3 | |
47 | 46 | eqcomd | |
48 | dffo2 | |
|
49 | 43 47 48 | sylanbrc | |
50 | df-f1o | |
|
51 | 42 49 50 | sylanbrc | |