Metamath Proof Explorer


Theorem odhash

Description: An element of zero order generates an infinite subgroup. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x X=BaseG
odhash.o O=odG
odhash.k K=mrClsSubGrpG
Assertion odhash GGrpAXOA=0KA=+∞

Proof

Step Hyp Ref Expression
1 odhash.x X=BaseG
2 odhash.o O=odG
3 odhash.k K=mrClsSubGrpG
4 eqid G=G
5 1 4 2 3 odf1o1 GGrpAXOA=0xxGA:1-1 ontoKA
6 zex V
7 6 f1oen xxGA:1-1 ontoKAKA
8 hasheni KA=KA
9 5 7 8 3syl GGrpAXOA=0=KA
10 ominf ¬ωFin
11 znnen
12 nnenom ω
13 11 12 entri ω
14 enfi ωFinωFin
15 13 14 ax-mp FinωFin
16 10 15 mtbir ¬Fin
17 hashinf V¬Fin=+∞
18 6 16 17 mp2an =+∞
19 9 18 eqtr3di GGrpAXOA=0KA=+∞