Metamath Proof Explorer


Theorem odhash2

Description: If an element has nonzero order, it generates a subgroup with size equal to the order. (Contributed by Stefan O'Rear, 12-Sep-2015)

Ref Expression
Hypotheses odhash.x X=BaseG
odhash.o O=odG
odhash.k K=mrClsSubGrpG
Assertion odhash2 GGrpAXOAKA=OA

Proof

Step Hyp Ref Expression
1 odhash.x X=BaseG
2 odhash.o O=odG
3 odhash.k K=mrClsSubGrpG
4 eqid G=G
5 1 4 2 3 odf1o2 GGrpAXOAx0..^OAxGA:0..^OA1-1 ontoKA
6 ovex 0..^OAV
7 6 f1oen x0..^OAxGA:0..^OA1-1 ontoKA0..^OAKA
8 hasheni 0..^OAKA0..^OA=KA
9 5 7 8 3syl GGrpAXOA0..^OA=KA
10 1 2 odcl AXOA0
11 10 3ad2ant2 GGrpAXOAOA0
12 hashfzo0 OA00..^OA=OA
13 11 12 syl GGrpAXOA0..^OA=OA
14 9 13 eqtr3d GGrpAXOAKA=OA