| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovres | ⊢ ( ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( 𝐹 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝐺 )  =  ( 𝐹  ∘f   +o  𝐺 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( 𝐹 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝐺 )  =  ( 𝐹  ∘f   +o  𝐺 ) ) | 
						
							| 3 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 4 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 5 | 4 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∩  𝐴 )  =  𝐴 ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  =  ( 𝐴  ∩  𝐴 ) ) | 
						
							| 7 | 3 3 6 | 3jca | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉  ∧  𝐴  =  ( 𝐴  ∩  𝐴 ) ) ) | 
						
							| 8 |  | ofoaf | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉  ∧  𝐴  =  ( 𝐴  ∩  𝐴 ) )  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ⟶ ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 9 | 7 8 | sylan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ⟶ ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 10 | 9 | fovcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( 𝐹 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝐺 )  ∈  ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 11 | 2 10 | eqeltrrd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( 𝐹  ∈  ( 𝐶  ↑m  𝐴 )  ∧  𝐺  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( 𝐹  ∘f   +o  𝐺 )  ∈  ( 𝐶  ↑m  𝐴 ) ) |