Step |
Hyp |
Ref |
Expression |
1 |
|
ovres |
⊢ ( ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐴 ) ) → ( 𝐹 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝐺 ) = ( 𝐹 ∘f +o 𝐺 ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( 𝐹 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝐺 ) = ( 𝐹 ∘f +o 𝐺 ) ) |
3 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
4 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
5 |
4
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐴 ) = 𝐴 ) |
6 |
5
|
eqcomd |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ( 𝐴 ∩ 𝐴 ) ) |
7 |
3 3 6
|
3jca |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = ( 𝐴 ∩ 𝐴 ) ) ) |
8 |
|
ofoaf |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = ( 𝐴 ∩ 𝐴 ) ) ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ⟶ ( 𝐶 ↑m 𝐴 ) ) |
9 |
7 8
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ⟶ ( 𝐶 ↑m 𝐴 ) ) |
10 |
9
|
fovcdmda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( 𝐹 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝐺 ) ∈ ( 𝐶 ↑m 𝐴 ) ) |
11 |
2 10
|
eqeltrrd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶 ↑m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o 𝐺 ) ∈ ( 𝐶 ↑m 𝐴 ) ) |