Metamath Proof Explorer


Theorem ofoacl

Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoacl ( ( ( 𝐴𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐴 ) ) ) → ( 𝐹f +o 𝐺 ) ∈ ( 𝐶m 𝐴 ) )

Proof

Step Hyp Ref Expression
1 ovres ( ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐴 ) ) → ( 𝐹 ( ∘f +o ↾ ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ) 𝐺 ) = ( 𝐹f +o 𝐺 ) )
2 1 adantl ( ( ( 𝐴𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐴 ) ) ) → ( 𝐹 ( ∘f +o ↾ ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ) 𝐺 ) = ( 𝐹f +o 𝐺 ) )
3 id ( 𝐴𝑉𝐴𝑉 )
4 inidm ( 𝐴𝐴 ) = 𝐴
5 4 a1i ( 𝐴𝑉 → ( 𝐴𝐴 ) = 𝐴 )
6 5 eqcomd ( 𝐴𝑉𝐴 = ( 𝐴𝐴 ) )
7 3 3 6 3jca ( 𝐴𝑉 → ( 𝐴𝑉𝐴𝑉𝐴 = ( 𝐴𝐴 ) ) )
8 ofoaf ( ( ( 𝐴𝑉𝐴𝑉𝐴 = ( 𝐴𝐴 ) ) ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ) : ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ⟶ ( 𝐶m 𝐴 ) )
9 7 8 sylan ( ( 𝐴𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ) : ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ⟶ ( 𝐶m 𝐴 ) )
10 9 fovcdmda ( ( ( 𝐴𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐴 ) ) ) → ( 𝐹 ( ∘f +o ↾ ( ( 𝐶m 𝐴 ) × ( 𝐶m 𝐴 ) ) ) 𝐺 ) ∈ ( 𝐶m 𝐴 ) )
11 2 10 eqeltrrd ( ( ( 𝐴𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( 𝐹 ∈ ( 𝐶m 𝐴 ) ∧ 𝐺 ∈ ( 𝐶m 𝐴 ) ) ) → ( 𝐹f +o 𝐺 ) ∈ ( 𝐶m 𝐴 ) )