Metamath Proof Explorer


Theorem ofoacl

Description: Closure law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoacl A V B On C = ω 𝑜 B F C A G C A F + 𝑜 f G C A

Proof

Step Hyp Ref Expression
1 ovres F C A G C A F f + 𝑜 C A × C A G = F + 𝑜 f G
2 1 adantl A V B On C = ω 𝑜 B F C A G C A F f + 𝑜 C A × C A G = F + 𝑜 f G
3 id A V A V
4 inidm A A = A
5 4 a1i A V A A = A
6 5 eqcomd A V A = A A
7 3 3 6 3jca A V A V A V A = A A
8 ofoaf A V A V A = A A B On C = ω 𝑜 B f + 𝑜 C A × C A : C A × C A C A
9 7 8 sylan A V B On C = ω 𝑜 B f + 𝑜 C A × C A : C A × C A C A
10 9 fovcdmda A V B On C = ω 𝑜 B F C A G C A F f + 𝑜 C A × C A G C A
11 2 10 eqeltrrd A V B On C = ω 𝑜 B F C A G C A F + 𝑜 f G C A