Metamath Proof Explorer


Theorem ofoaf

Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoaf A V B W C = A B D On E = ω 𝑜 D f + 𝑜 E A × E B : E A × E B E C

Proof

Step Hyp Ref Expression
1 simpr D On E = ω 𝑜 D E = ω 𝑜 D
2 omelon ω On
3 simpl D On E = ω 𝑜 D D On
4 oecl ω On D On ω 𝑜 D On
5 2 3 4 sylancr D On E = ω 𝑜 D ω 𝑜 D On
6 1 5 eqeltrd D On E = ω 𝑜 D E On
7 3 2 jctil D On E = ω 𝑜 D ω On D On
8 peano1 ω
9 oen0 ω On D On ω ω 𝑜 D
10 7 8 9 sylancl D On E = ω 𝑜 D ω 𝑜 D
11 10 1 eleqtrrd D On E = ω 𝑜 D E
12 oveq1 x = x + 𝑜 E = + 𝑜 E
13 12 sseq2d x = E x + 𝑜 E E + 𝑜 E
14 13 adantl D On E = ω 𝑜 D x = E x + 𝑜 E E + 𝑜 E
15 oa0r E On + 𝑜 E = E
16 6 15 syl D On E = ω 𝑜 D + 𝑜 E = E
17 ssid + 𝑜 E + 𝑜 E
18 16 17 eqsstrrdi D On E = ω 𝑜 D E + 𝑜 E
19 11 14 18 rspcedvd D On E = ω 𝑜 D x E E x + 𝑜 E
20 ssiun x E E x + 𝑜 E E x E x + 𝑜 E
21 19 20 syl D On E = ω 𝑜 D E x E x + 𝑜 E
22 1 eleq2d D On E = ω 𝑜 D x E x ω 𝑜 D
23 22 biimpa D On E = ω 𝑜 D x E x ω 𝑜 D
24 6 adantr D On E = ω 𝑜 D x E E On
25 1 adantr D On E = ω 𝑜 D x E E = ω 𝑜 D
26 ssid E E
27 25 26 eqsstrrdi D On E = ω 𝑜 D x E ω 𝑜 D E
28 oaabs2 x ω 𝑜 D E On ω 𝑜 D E x + 𝑜 E = E
29 23 24 27 28 syl21anc D On E = ω 𝑜 D x E x + 𝑜 E = E
30 29 26 eqsstrdi D On E = ω 𝑜 D x E x + 𝑜 E E
31 30 iunssd D On E = ω 𝑜 D x E x + 𝑜 E E
32 21 31 eqssd D On E = ω 𝑜 D E = x E x + 𝑜 E
33 6 6 32 3jca D On E = ω 𝑜 D E On E On E = x E x + 𝑜 E
34 ofoafg A V B W C = A B E On E On E = x E x + 𝑜 E f + 𝑜 E A × E B : E A × E B E C
35 33 34 sylan2 A V B W C = A B D On E = ω 𝑜 D f + 𝑜 E A × E B : E A × E B E C