Metamath Proof Explorer


Theorem ofoafo

Description: Addition operator for functions from a set into a power of omega is an onto binary operator. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoafo AVBOnC=ω𝑜Bf+𝑜CA×CA:CA×CAontoCA

Proof

Step Hyp Ref Expression
1 id AVAV
2 inidm AA=A
3 2 eqcomi A=AA
4 3 a1i AVA=AA
5 1 1 4 3jca AVAVAVA=AA
6 ofoaf AVAVA=AABOnC=ω𝑜Bf+𝑜CA×CA:CA×CACA
7 5 6 sylan AVBOnC=ω𝑜Bf+𝑜CA×CA:CA×CACA
8 simpr AVBOnC=ω𝑜BhCAhCA
9 omelon ωOn
10 9 a1i BOnC=ω𝑜BωOn
11 simpl BOnC=ω𝑜BBOn
12 10 11 jca BOnC=ω𝑜BωOnBOn
13 peano1 ω
14 oen0 ωOnBOnωω𝑜B
15 12 13 14 sylancl BOnC=ω𝑜Bω𝑜B
16 simpr BOnC=ω𝑜BC=ω𝑜B
17 15 16 eleqtrrd BOnC=ω𝑜BC
18 fconst6g CA×:AC
19 17 18 syl BOnC=ω𝑜BA×:AC
20 19 adantl AVBOnC=ω𝑜BA×:AC
21 oecl ωOnBOnω𝑜BOn
22 9 11 21 sylancr BOnC=ω𝑜Bω𝑜BOn
23 16 22 eqeltrd BOnC=ω𝑜BCOn
24 23 adantl AVBOnC=ω𝑜BCOn
25 simpl AVBOnC=ω𝑜BAV
26 24 25 elmapd AVBOnC=ω𝑜BA×CAA×:AC
27 20 26 mpbird AVBOnC=ω𝑜BA×CA
28 27 adantr AVBOnC=ω𝑜BhCAA×CA
29 ovres hCAA×CAhf+𝑜CA×CAA×=h+𝑜fA×
30 29 adantl AVBOnC=ω𝑜BhCAA×CAhf+𝑜CA×CAA×=h+𝑜fA×
31 elmapi hCAh:AC
32 31 adantr hCAA×CAh:AC
33 32 ffnd hCAA×CAhFnA
34 33 adantl AVBOnC=ω𝑜BhCAA×CAhFnA
35 elmapi A×CAA×:AC
36 35 adantl hCAA×CAA×:AC
37 36 ffnd hCAA×CAA×FnA
38 37 adantl AVBOnC=ω𝑜BhCAA×CAA×FnA
39 25 adantr AVBOnC=ω𝑜BhCAA×CAAV
40 34 38 39 39 2 offn AVBOnC=ω𝑜BhCAA×CAh+𝑜fA×FnA
41 elmapfn hCAhFnA
42 elmapfn A×CAA×FnA
43 41 42 anim12i hCAA×CAhFnAA×FnA
44 43 adantl AVBOnC=ω𝑜BhCAA×CAhFnAA×FnA
45 39 anim1i AVBOnC=ω𝑜BhCAA×CAaAAVaA
46 fnfvof hFnAA×FnAAVaAh+𝑜fA×a=ha+𝑜A×a
47 44 45 46 syl2an2r AVBOnC=ω𝑜BhCAA×CAaAh+𝑜fA×a=ha+𝑜A×a
48 simpr AVBOnC=ω𝑜BhCAA×CAaAaA
49 fvconst2g ωaAA×a=
50 13 48 49 sylancr AVBOnC=ω𝑜BhCAA×CAaAA×a=
51 50 oveq2d AVBOnC=ω𝑜BhCAA×CAaAha+𝑜A×a=ha+𝑜
52 24 adantr AVBOnC=ω𝑜BhCAA×CACOn
53 52 adantr AVBOnC=ω𝑜BhCAA×CAaACOn
54 onss COnCOn
55 53 54 syl AVBOnC=ω𝑜BhCAA×CAaACOn
56 31 ad2antrl AVBOnC=ω𝑜BhCAA×CAh:AC
57 56 ffvelcdmda AVBOnC=ω𝑜BhCAA×CAaAhaC
58 55 57 sseldd AVBOnC=ω𝑜BhCAA×CAaAhaOn
59 oa0 haOnha+𝑜=ha
60 58 59 syl AVBOnC=ω𝑜BhCAA×CAaAha+𝑜=ha
61 47 51 60 3eqtrd AVBOnC=ω𝑜BhCAA×CAaAh+𝑜fA×a=ha
62 40 34 61 eqfnfvd AVBOnC=ω𝑜BhCAA×CAh+𝑜fA×=h
63 30 62 eqtr2d AVBOnC=ω𝑜BhCAA×CAh=hf+𝑜CA×CAA×
64 63 expr AVBOnC=ω𝑜BhCAA×CAh=hf+𝑜CA×CAA×
65 28 64 jcai AVBOnC=ω𝑜BhCAA×CAh=hf+𝑜CA×CAA×
66 oveq2 z=A×hf+𝑜CA×CAz=hf+𝑜CA×CAA×
67 66 rspceeqv A×CAh=hf+𝑜CA×CAA×zCAh=hf+𝑜CA×CAz
68 65 67 syl AVBOnC=ω𝑜BhCAzCAh=hf+𝑜CA×CAz
69 8 68 jca AVBOnC=ω𝑜BhCAhCAzCAh=hf+𝑜CA×CAz
70 oveq1 f=hff+𝑜CA×CAz=hf+𝑜CA×CAz
71 70 eqeq2d f=hh=ff+𝑜CA×CAzh=hf+𝑜CA×CAz
72 71 rexbidv f=hzCAh=ff+𝑜CA×CAzzCAh=hf+𝑜CA×CAz
73 72 rspcev hCAzCAh=hf+𝑜CA×CAzfCAzCAh=ff+𝑜CA×CAz
74 69 73 syl AVBOnC=ω𝑜BhCAfCAzCAh=ff+𝑜CA×CAz
75 74 ralrimiva AVBOnC=ω𝑜BhCAfCAzCAh=ff+𝑜CA×CAz
76 foov f+𝑜CA×CA:CA×CAontoCAf+𝑜CA×CA:CA×CACAhCAfCAzCAh=ff+𝑜CA×CAz
77 7 75 76 sylanbrc AVBOnC=ω𝑜Bf+𝑜CA×CA:CA×CAontoCA