| Step | Hyp | Ref | Expression | 
						
							| 1 |  | id | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ∈  𝑉 ) | 
						
							| 2 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 3 | 2 | eqcomi | ⊢ 𝐴  =  ( 𝐴  ∩  𝐴 ) | 
						
							| 4 | 3 | a1i | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  =  ( 𝐴  ∩  𝐴 ) ) | 
						
							| 5 | 1 1 4 | 3jca | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉  ∧  𝐴  =  ( 𝐴  ∩  𝐴 ) ) ) | 
						
							| 6 |  | ofoaf | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉  ∧  𝐴  =  ( 𝐴  ∩  𝐴 ) )  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ⟶ ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 7 | 5 6 | sylan | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ⟶ ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 8 |  | simpr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 9 |  | omelon | ⊢ ω  ∈  On | 
						
							| 10 | 9 | a1i | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  ω  ∈  On ) | 
						
							| 11 |  | simpl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  𝐵  ∈  On ) | 
						
							| 12 | 10 11 | jca | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  ( ω  ∈  On  ∧  𝐵  ∈  On ) ) | 
						
							| 13 |  | peano1 | ⊢ ∅  ∈  ω | 
						
							| 14 |  | oen0 | ⊢ ( ( ( ω  ∈  On  ∧  𝐵  ∈  On )  ∧  ∅  ∈  ω )  →  ∅  ∈  ( ω  ↑o  𝐵 ) ) | 
						
							| 15 | 12 13 14 | sylancl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  ∅  ∈  ( ω  ↑o  𝐵 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  𝐶  =  ( ω  ↑o  𝐵 ) ) | 
						
							| 17 | 15 16 | eleqtrrd | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  ∅  ∈  𝐶 ) | 
						
							| 18 |  | fconst6g | ⊢ ( ∅  ∈  𝐶  →  ( 𝐴  ×  { ∅ } ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 19 | 17 18 | syl | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  ( 𝐴  ×  { ∅ } ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 20 | 19 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  ( 𝐴  ×  { ∅ } ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 21 |  | oecl | ⊢ ( ( ω  ∈  On  ∧  𝐵  ∈  On )  →  ( ω  ↑o  𝐵 )  ∈  On ) | 
						
							| 22 | 9 11 21 | sylancr | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  ( ω  ↑o  𝐵 )  ∈  On ) | 
						
							| 23 | 16 22 | eqeltrd | ⊢ ( ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) )  →  𝐶  ∈  On ) | 
						
							| 24 | 23 | adantl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  𝐶  ∈  On ) | 
						
							| 25 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 26 | 24 25 | elmapd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  ( ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 )  ↔  ( 𝐴  ×  { ∅ } ) : 𝐴 ⟶ 𝐶 ) ) | 
						
							| 27 | 20 26 | mpbird | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 28 | 27 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) | 
						
							| 29 |  | ovres | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) )  =  ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) ) ) | 
						
							| 30 | 29 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) )  =  ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) ) ) | 
						
							| 31 |  | elmapi | ⊢ ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  →  ℎ : 𝐴 ⟶ 𝐶 ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ℎ : 𝐴 ⟶ 𝐶 ) | 
						
							| 33 | 32 | ffnd | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ℎ  Fn  𝐴 ) | 
						
							| 34 | 33 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ℎ  Fn  𝐴 ) | 
						
							| 35 |  | elmapi | ⊢ ( ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 )  →  ( 𝐴  ×  { ∅ } ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 36 | 35 | adantl | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( 𝐴  ×  { ∅ } ) : 𝐴 ⟶ 𝐶 ) | 
						
							| 37 | 36 | ffnd | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( 𝐴  ×  { ∅ } )  Fn  𝐴 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( 𝐴  ×  { ∅ } )  Fn  𝐴 ) | 
						
							| 39 | 25 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 40 | 34 38 39 39 2 | offn | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) )  Fn  𝐴 ) | 
						
							| 41 |  | elmapfn | ⊢ ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  →  ℎ  Fn  𝐴 ) | 
						
							| 42 |  | elmapfn | ⊢ ( ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 )  →  ( 𝐴  ×  { ∅ } )  Fn  𝐴 ) | 
						
							| 43 | 41 42 | anim12i | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( ℎ  Fn  𝐴  ∧  ( 𝐴  ×  { ∅ } )  Fn  𝐴 ) ) | 
						
							| 44 | 43 | adantl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( ℎ  Fn  𝐴  ∧  ( 𝐴  ×  { ∅ } )  Fn  𝐴 ) ) | 
						
							| 45 | 39 | anim1i | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) ) | 
						
							| 46 |  | fnfvof | ⊢ ( ( ( ℎ  Fn  𝐴  ∧  ( 𝐴  ×  { ∅ } )  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) ) ‘ 𝑎 )  =  ( ( ℎ ‘ 𝑎 )  +o  ( ( 𝐴  ×  { ∅ } ) ‘ 𝑎 ) ) ) | 
						
							| 47 | 44 45 46 | syl2an2r | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) ) ‘ 𝑎 )  =  ( ( ℎ ‘ 𝑎 )  +o  ( ( 𝐴  ×  { ∅ } ) ‘ 𝑎 ) ) ) | 
						
							| 48 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  𝑎  ∈  𝐴 ) | 
						
							| 49 |  | fvconst2g | ⊢ ( ( ∅  ∈  ω  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐴  ×  { ∅ } ) ‘ 𝑎 )  =  ∅ ) | 
						
							| 50 | 13 48 49 | sylancr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐴  ×  { ∅ } ) ‘ 𝑎 )  =  ∅ ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℎ ‘ 𝑎 )  +o  ( ( 𝐴  ×  { ∅ } ) ‘ 𝑎 ) )  =  ( ( ℎ ‘ 𝑎 )  +o  ∅ ) ) | 
						
							| 52 | 24 | adantr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  𝐶  ∈  On ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  𝐶  ∈  On ) | 
						
							| 54 |  | onss | ⊢ ( 𝐶  ∈  On  →  𝐶  ⊆  On ) | 
						
							| 55 | 53 54 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  𝐶  ⊆  On ) | 
						
							| 56 | 31 | ad2antrl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ℎ : 𝐴 ⟶ 𝐶 ) | 
						
							| 57 | 56 | ffvelcdmda | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ℎ ‘ 𝑎 )  ∈  𝐶 ) | 
						
							| 58 | 55 57 | sseldd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ℎ ‘ 𝑎 )  ∈  On ) | 
						
							| 59 |  | oa0 | ⊢ ( ( ℎ ‘ 𝑎 )  ∈  On  →  ( ( ℎ ‘ 𝑎 )  +o  ∅ )  =  ( ℎ ‘ 𝑎 ) ) | 
						
							| 60 | 58 59 | syl | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℎ ‘ 𝑎 )  +o  ∅ )  =  ( ℎ ‘ 𝑎 ) ) | 
						
							| 61 | 47 51 60 | 3eqtrd | ⊢ ( ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) ) ‘ 𝑎 )  =  ( ℎ ‘ 𝑎 ) ) | 
						
							| 62 | 40 34 61 | eqfnfvd | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ( ℎ  ∘f   +o  ( 𝐴  ×  { ∅ } ) )  =  ℎ ) | 
						
							| 63 | 30 62 | eqtr2d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 ) ) )  →  ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) ) ) | 
						
							| 64 | 63 | expr | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 )  →  ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) ) ) ) | 
						
							| 65 | 28 64 | jcai | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) ) ) ) | 
						
							| 66 |  | oveq2 | ⊢ ( 𝑧  =  ( 𝐴  ×  { ∅ } )  →  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 )  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) ) ) | 
						
							| 67 | 66 | rspceeqv | ⊢ ( ( ( 𝐴  ×  { ∅ } )  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) ( 𝐴  ×  { ∅ } ) ) )  →  ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) | 
						
							| 68 | 65 67 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) | 
						
							| 69 | 8 68 | jca | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) ) | 
						
							| 70 |  | oveq1 | ⊢ ( 𝑓  =  ℎ  →  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 )  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) | 
						
							| 71 | 70 | eqeq2d | ⊢ ( 𝑓  =  ℎ  →  ( ℎ  =  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 )  ↔  ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) ) | 
						
							| 72 | 71 | rexbidv | ⊢ ( 𝑓  =  ℎ  →  ( ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 )  ↔  ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) ) | 
						
							| 73 | 72 | rspcev | ⊢ ( ( ℎ  ∈  ( 𝐶  ↑m  𝐴 )  ∧  ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( ℎ (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) )  →  ∃ 𝑓  ∈  ( 𝐶  ↑m  𝐴 ) ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) | 
						
							| 74 | 69 73 | syl | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  ∧  ℎ  ∈  ( 𝐶  ↑m  𝐴 ) )  →  ∃ 𝑓  ∈  ( 𝐶  ↑m  𝐴 ) ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) | 
						
							| 75 | 74 | ralrimiva | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  ∀ ℎ  ∈  ( 𝐶  ↑m  𝐴 ) ∃ 𝑓  ∈  ( 𝐶  ↑m  𝐴 ) ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) | 
						
							| 76 |  | foov | ⊢ ( (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) –onto→ ( 𝐶  ↑m  𝐴 )  ↔  ( (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ⟶ ( 𝐶  ↑m  𝐴 )  ∧  ∀ ℎ  ∈  ( 𝐶  ↑m  𝐴 ) ∃ 𝑓  ∈  ( 𝐶  ↑m  𝐴 ) ∃ 𝑧  ∈  ( 𝐶  ↑m  𝐴 ) ℎ  =  ( 𝑓 (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) 𝑧 ) ) ) | 
						
							| 77 | 7 75 76 | sylanbrc | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐵  ∈  On  ∧  𝐶  =  ( ω  ↑o  𝐵 ) ) )  →  (  ∘f   +o   ↾  ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) ) : ( ( 𝐶  ↑m  𝐴 )  ×  ( 𝐶  ↑m  𝐴 ) ) –onto→ ( 𝐶  ↑m  𝐴 ) ) |