Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉 ) |
2 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
3 |
2
|
eqcomi |
⊢ 𝐴 = ( 𝐴 ∩ 𝐴 ) |
4 |
3
|
a1i |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 = ( 𝐴 ∩ 𝐴 ) ) |
5 |
1 1 4
|
3jca |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = ( 𝐴 ∩ 𝐴 ) ) ) |
6 |
|
ofoaf |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 = ( 𝐴 ∩ 𝐴 ) ) ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ⟶ ( 𝐶 ↑m 𝐴 ) ) |
7 |
5 6
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ⟶ ( 𝐶 ↑m 𝐴 ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) |
9 |
|
omelon |
⊢ ω ∈ On |
10 |
9
|
a1i |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → ω ∈ On ) |
11 |
|
simpl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → 𝐵 ∈ On ) |
12 |
10 11
|
jca |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → ( ω ∈ On ∧ 𝐵 ∈ On ) ) |
13 |
|
peano1 |
⊢ ∅ ∈ ω |
14 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐵 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐵 ) ) |
15 |
12 13 14
|
sylancl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → ∅ ∈ ( ω ↑o 𝐵 ) ) |
16 |
|
simpr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → 𝐶 = ( ω ↑o 𝐵 ) ) |
17 |
15 16
|
eleqtrrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → ∅ ∈ 𝐶 ) |
18 |
|
fconst6g |
⊢ ( ∅ ∈ 𝐶 → ( 𝐴 × { ∅ } ) : 𝐴 ⟶ 𝐶 ) |
19 |
17 18
|
syl |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → ( 𝐴 × { ∅ } ) : 𝐴 ⟶ 𝐶 ) |
20 |
19
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( 𝐴 × { ∅ } ) : 𝐴 ⟶ 𝐶 ) |
21 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐵 ∈ On ) → ( ω ↑o 𝐵 ) ∈ On ) |
22 |
9 11 21
|
sylancr |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → ( ω ↑o 𝐵 ) ∈ On ) |
23 |
16 22
|
eqeltrd |
⊢ ( ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) → 𝐶 ∈ On ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → 𝐶 ∈ On ) |
25 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → 𝐴 ∈ 𝑉 ) |
26 |
24 25
|
elmapd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ↔ ( 𝐴 × { ∅ } ) : 𝐴 ⟶ 𝐶 ) ) |
27 |
20 26
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) |
28 |
27
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) |
29 |
|
ovres |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) → ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) = ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) ) |
30 |
29
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) = ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) ) |
31 |
|
elmapi |
⊢ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) → ℎ : 𝐴 ⟶ 𝐶 ) |
32 |
31
|
adantr |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) → ℎ : 𝐴 ⟶ 𝐶 ) |
33 |
32
|
ffnd |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) → ℎ Fn 𝐴 ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ℎ Fn 𝐴 ) |
35 |
|
elmapi |
⊢ ( ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) → ( 𝐴 × { ∅ } ) : 𝐴 ⟶ 𝐶 ) |
36 |
35
|
adantl |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) → ( 𝐴 × { ∅ } ) : 𝐴 ⟶ 𝐶 ) |
37 |
36
|
ffnd |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) → ( 𝐴 × { ∅ } ) Fn 𝐴 ) |
38 |
37
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( 𝐴 × { ∅ } ) Fn 𝐴 ) |
39 |
25
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → 𝐴 ∈ 𝑉 ) |
40 |
34 38 39 39 2
|
offn |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) Fn 𝐴 ) |
41 |
|
elmapfn |
⊢ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) → ℎ Fn 𝐴 ) |
42 |
|
elmapfn |
⊢ ( ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) → ( 𝐴 × { ∅ } ) Fn 𝐴 ) |
43 |
41 42
|
anim12i |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) → ( ℎ Fn 𝐴 ∧ ( 𝐴 × { ∅ } ) Fn 𝐴 ) ) |
44 |
43
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( ℎ Fn 𝐴 ∧ ( 𝐴 × { ∅ } ) Fn 𝐴 ) ) |
45 |
39
|
anim1i |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) |
46 |
|
fnfvof |
⊢ ( ( ( ℎ Fn 𝐴 ∧ ( 𝐴 × { ∅ } ) Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) ‘ 𝑎 ) = ( ( ℎ ‘ 𝑎 ) +o ( ( 𝐴 × { ∅ } ) ‘ 𝑎 ) ) ) |
47 |
44 45 46
|
syl2an2r |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) ‘ 𝑎 ) = ( ( ℎ ‘ 𝑎 ) +o ( ( 𝐴 × { ∅ } ) ‘ 𝑎 ) ) ) |
48 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝑎 ∈ 𝐴 ) |
49 |
|
fvconst2g |
⊢ ( ( ∅ ∈ ω ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐴 × { ∅ } ) ‘ 𝑎 ) = ∅ ) |
50 |
13 48 49
|
sylancr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐴 × { ∅ } ) ‘ 𝑎 ) = ∅ ) |
51 |
50
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℎ ‘ 𝑎 ) +o ( ( 𝐴 × { ∅ } ) ‘ 𝑎 ) ) = ( ( ℎ ‘ 𝑎 ) +o ∅ ) ) |
52 |
24
|
adantr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → 𝐶 ∈ On ) |
53 |
52
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ∈ On ) |
54 |
|
onss |
⊢ ( 𝐶 ∈ On → 𝐶 ⊆ On ) |
55 |
53 54
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → 𝐶 ⊆ On ) |
56 |
31
|
ad2antrl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ℎ : 𝐴 ⟶ 𝐶 ) |
57 |
56
|
ffvelcdmda |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ℎ ‘ 𝑎 ) ∈ 𝐶 ) |
58 |
55 57
|
sseldd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ℎ ‘ 𝑎 ) ∈ On ) |
59 |
|
oa0 |
⊢ ( ( ℎ ‘ 𝑎 ) ∈ On → ( ( ℎ ‘ 𝑎 ) +o ∅ ) = ( ℎ ‘ 𝑎 ) ) |
60 |
58 59
|
syl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℎ ‘ 𝑎 ) +o ∅ ) = ( ℎ ‘ 𝑎 ) ) |
61 |
47 51 60
|
3eqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) ‘ 𝑎 ) = ( ℎ ‘ 𝑎 ) ) |
62 |
40 34 61
|
eqfnfvd |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ( ℎ ∘f +o ( 𝐴 × { ∅ } ) ) = ℎ ) |
63 |
30 62
|
eqtr2d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ) ) → ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) ) |
64 |
63
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ( ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) → ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) ) ) |
65 |
28 64
|
jcai |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ( ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ∧ ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) ) ) |
66 |
|
oveq2 |
⊢ ( 𝑧 = ( 𝐴 × { ∅ } ) → ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) ) |
67 |
66
|
rspceeqv |
⊢ ( ( ( 𝐴 × { ∅ } ) ∈ ( 𝐶 ↑m 𝐴 ) ∧ ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) ( 𝐴 × { ∅ } ) ) ) → ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) |
68 |
65 67
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) |
69 |
8 68
|
jca |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) ) |
70 |
|
oveq1 |
⊢ ( 𝑓 = ℎ → ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) |
71 |
70
|
eqeq2d |
⊢ ( 𝑓 = ℎ → ( ℎ = ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ↔ ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) ) |
72 |
71
|
rexbidv |
⊢ ( 𝑓 = ℎ → ( ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ↔ ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) ) |
73 |
72
|
rspcev |
⊢ ( ( ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∧ ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( ℎ ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) → ∃ 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) |
74 |
69 73
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) ∧ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ) → ∃ 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) |
75 |
74
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ∀ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∃ 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) |
76 |
|
foov |
⊢ ( ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) –onto→ ( 𝐶 ↑m 𝐴 ) ↔ ( ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ⟶ ( 𝐶 ↑m 𝐴 ) ∧ ∀ ℎ ∈ ( 𝐶 ↑m 𝐴 ) ∃ 𝑓 ∈ ( 𝐶 ↑m 𝐴 ) ∃ 𝑧 ∈ ( 𝐶 ↑m 𝐴 ) ℎ = ( 𝑓 ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) 𝑧 ) ) ) |
77 |
7 75 76
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐵 ∈ On ∧ 𝐶 = ( ω ↑o 𝐵 ) ) ) → ( ∘f +o ↾ ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) ) : ( ( 𝐶 ↑m 𝐴 ) × ( 𝐶 ↑m 𝐴 ) ) –onto→ ( 𝐶 ↑m 𝐴 ) ) |