Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 = ( ω ↑o 𝐷 ) ) |
2 |
|
omelon |
⊢ ω ∈ On |
3 |
|
simpl |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐷 ∈ On ) |
4 |
|
oecl |
⊢ ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On ) |
5 |
2 3 4
|
sylancr |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( ω ↑o 𝐷 ) ∈ On ) |
6 |
1 5
|
eqeltrd |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 ∈ On ) |
7 |
3 2
|
jctil |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( ω ∈ On ∧ 𝐷 ∈ On ) ) |
8 |
|
peano1 |
⊢ ∅ ∈ ω |
9 |
|
oen0 |
⊢ ( ( ( ω ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
10 |
7 8 9
|
sylancl |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∅ ∈ ( ω ↑o 𝐷 ) ) |
11 |
10 1
|
eleqtrrd |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∅ ∈ 𝐸 ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 +o 𝐸 ) = ( ∅ +o 𝐸 ) ) |
13 |
12
|
sseq2d |
⊢ ( 𝑥 = ∅ → ( 𝐸 ⊆ ( 𝑥 +o 𝐸 ) ↔ 𝐸 ⊆ ( ∅ +o 𝐸 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 = ∅ ) → ( 𝐸 ⊆ ( 𝑥 +o 𝐸 ) ↔ 𝐸 ⊆ ( ∅ +o 𝐸 ) ) ) |
15 |
|
oa0r |
⊢ ( 𝐸 ∈ On → ( ∅ +o 𝐸 ) = 𝐸 ) |
16 |
6 15
|
syl |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( ∅ +o 𝐸 ) = 𝐸 ) |
17 |
|
ssid |
⊢ ( ∅ +o 𝐸 ) ⊆ ( ∅ +o 𝐸 ) |
18 |
16 17
|
eqsstrrdi |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 ⊆ ( ∅ +o 𝐸 ) ) |
19 |
11 14 18
|
rspcedvd |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∃ 𝑥 ∈ 𝐸 𝐸 ⊆ ( 𝑥 +o 𝐸 ) ) |
20 |
|
ssiun |
⊢ ( ∃ 𝑥 ∈ 𝐸 𝐸 ⊆ ( 𝑥 +o 𝐸 ) → 𝐸 ⊆ ∪ 𝑥 ∈ 𝐸 ( 𝑥 +o 𝐸 ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 ⊆ ∪ 𝑥 ∈ 𝐸 ( 𝑥 +o 𝐸 ) ) |
22 |
1
|
eleq2d |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( 𝑥 ∈ 𝐸 ↔ 𝑥 ∈ ( ω ↑o 𝐷 ) ) ) |
23 |
22
|
biimpa |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 ∈ 𝐸 ) → 𝑥 ∈ ( ω ↑o 𝐷 ) ) |
24 |
6
|
adantr |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 ∈ 𝐸 ) → 𝐸 ∈ On ) |
25 |
1
|
adantr |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 ∈ 𝐸 ) → 𝐸 = ( ω ↑o 𝐷 ) ) |
26 |
|
ssid |
⊢ 𝐸 ⊆ 𝐸 |
27 |
25 26
|
eqsstrrdi |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 ∈ 𝐸 ) → ( ω ↑o 𝐷 ) ⊆ 𝐸 ) |
28 |
|
oaabs2 |
⊢ ( ( ( 𝑥 ∈ ( ω ↑o 𝐷 ) ∧ 𝐸 ∈ On ) ∧ ( ω ↑o 𝐷 ) ⊆ 𝐸 ) → ( 𝑥 +o 𝐸 ) = 𝐸 ) |
29 |
23 24 27 28
|
syl21anc |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 ∈ 𝐸 ) → ( 𝑥 +o 𝐸 ) = 𝐸 ) |
30 |
29 26
|
eqsstrdi |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 ∈ 𝐸 ) → ( 𝑥 +o 𝐸 ) ⊆ 𝐸 ) |
31 |
30
|
iunssd |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∪ 𝑥 ∈ 𝐸 ( 𝑥 +o 𝐸 ) ⊆ 𝐸 ) |
32 |
21 31
|
eqssd |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 = ∪ 𝑥 ∈ 𝐸 ( 𝑥 +o 𝐸 ) ) |
33 |
6 6 32
|
3jca |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( 𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = ∪ 𝑥 ∈ 𝐸 ( 𝑥 +o 𝐸 ) ) ) |
34 |
|
ofoafg |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = ∪ 𝑥 ∈ 𝐸 ( 𝑥 +o 𝐸 ) ) ) → ( ∘f +o ↾ ( ( 𝐸 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ) : ( ( 𝐸 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ⟶ ( 𝐸 ↑m 𝐶 ) ) |
35 |
33 34
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ) → ( ∘f +o ↾ ( ( 𝐸 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ) : ( ( 𝐸 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ⟶ ( 𝐸 ↑m 𝐶 ) ) |