Metamath Proof Explorer


Theorem ofoaf

Description: Addition operator for functions from sets into power of omega results in a function from the intersection of sets to that power of omega. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoaf ( ( ( 𝐴𝑉𝐵𝑊𝐶 = ( 𝐴𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ) → ( ∘f +o ↾ ( ( 𝐸m 𝐴 ) × ( 𝐸m 𝐵 ) ) ) : ( ( 𝐸m 𝐴 ) × ( 𝐸m 𝐵 ) ) ⟶ ( 𝐸m 𝐶 ) )

Proof

Step Hyp Ref Expression
1 simpr ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 = ( ω ↑o 𝐷 ) )
2 omelon ω ∈ On
3 simpl ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐷 ∈ On )
4 oecl ( ( ω ∈ On ∧ 𝐷 ∈ On ) → ( ω ↑o 𝐷 ) ∈ On )
5 2 3 4 sylancr ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( ω ↑o 𝐷 ) ∈ On )
6 1 5 eqeltrd ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 ∈ On )
7 3 2 jctil ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( ω ∈ On ∧ 𝐷 ∈ On ) )
8 peano1 ∅ ∈ ω
9 oen0 ( ( ( ω ∈ On ∧ 𝐷 ∈ On ) ∧ ∅ ∈ ω ) → ∅ ∈ ( ω ↑o 𝐷 ) )
10 7 8 9 sylancl ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∅ ∈ ( ω ↑o 𝐷 ) )
11 10 1 eleqtrrd ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∅ ∈ 𝐸 )
12 oveq1 ( 𝑥 = ∅ → ( 𝑥 +o 𝐸 ) = ( ∅ +o 𝐸 ) )
13 12 sseq2d ( 𝑥 = ∅ → ( 𝐸 ⊆ ( 𝑥 +o 𝐸 ) ↔ 𝐸 ⊆ ( ∅ +o 𝐸 ) ) )
14 13 adantl ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥 = ∅ ) → ( 𝐸 ⊆ ( 𝑥 +o 𝐸 ) ↔ 𝐸 ⊆ ( ∅ +o 𝐸 ) ) )
15 oa0r ( 𝐸 ∈ On → ( ∅ +o 𝐸 ) = 𝐸 )
16 6 15 syl ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( ∅ +o 𝐸 ) = 𝐸 )
17 ssid ( ∅ +o 𝐸 ) ⊆ ( ∅ +o 𝐸 )
18 16 17 eqsstrrdi ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 ⊆ ( ∅ +o 𝐸 ) )
19 11 14 18 rspcedvd ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ∃ 𝑥𝐸 𝐸 ⊆ ( 𝑥 +o 𝐸 ) )
20 ssiun ( ∃ 𝑥𝐸 𝐸 ⊆ ( 𝑥 +o 𝐸 ) → 𝐸 𝑥𝐸 ( 𝑥 +o 𝐸 ) )
21 19 20 syl ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 𝑥𝐸 ( 𝑥 +o 𝐸 ) )
22 1 eleq2d ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( 𝑥𝐸𝑥 ∈ ( ω ↑o 𝐷 ) ) )
23 22 biimpa ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥𝐸 ) → 𝑥 ∈ ( ω ↑o 𝐷 ) )
24 6 adantr ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥𝐸 ) → 𝐸 ∈ On )
25 1 adantr ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥𝐸 ) → 𝐸 = ( ω ↑o 𝐷 ) )
26 ssid 𝐸𝐸
27 25 26 eqsstrrdi ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥𝐸 ) → ( ω ↑o 𝐷 ) ⊆ 𝐸 )
28 oaabs2 ( ( ( 𝑥 ∈ ( ω ↑o 𝐷 ) ∧ 𝐸 ∈ On ) ∧ ( ω ↑o 𝐷 ) ⊆ 𝐸 ) → ( 𝑥 +o 𝐸 ) = 𝐸 )
29 23 24 27 28 syl21anc ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥𝐸 ) → ( 𝑥 +o 𝐸 ) = 𝐸 )
30 29 26 eqsstrdi ( ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ∧ 𝑥𝐸 ) → ( 𝑥 +o 𝐸 ) ⊆ 𝐸 )
31 30 iunssd ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝑥𝐸 ( 𝑥 +o 𝐸 ) ⊆ 𝐸 )
32 21 31 eqssd ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → 𝐸 = 𝑥𝐸 ( 𝑥 +o 𝐸 ) )
33 6 6 32 3jca ( ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) → ( 𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 ( 𝑥 +o 𝐸 ) ) )
34 ofoafg ( ( ( 𝐴𝑉𝐵𝑊𝐶 = ( 𝐴𝐵 ) ) ∧ ( 𝐸 ∈ On ∧ 𝐸 ∈ On ∧ 𝐸 = 𝑥𝐸 ( 𝑥 +o 𝐸 ) ) ) → ( ∘f +o ↾ ( ( 𝐸m 𝐴 ) × ( 𝐸m 𝐵 ) ) ) : ( ( 𝐸m 𝐴 ) × ( 𝐸m 𝐵 ) ) ⟶ ( 𝐸m 𝐶 ) )
35 33 34 sylan2 ( ( ( 𝐴𝑉𝐵𝑊𝐶 = ( 𝐴𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 = ( ω ↑o 𝐷 ) ) ) → ( ∘f +o ↾ ( ( 𝐸m 𝐴 ) × ( 𝐸m 𝐵 ) ) ) : ( ( 𝐸m 𝐴 ) × ( 𝐸m 𝐵 ) ) ⟶ ( 𝐸m 𝐶 ) )