| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) → 𝐷 ∈ On ) |
| 2 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → 𝐴 ∈ 𝑉 ) |
| 3 |
|
elmapg |
⊢ ( ( 𝐷 ∈ On ∧ 𝐴 ∈ 𝑉 ) → ( 𝑓 ∈ ( 𝐷 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐷 ) ) |
| 4 |
1 2 3
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → ( 𝑓 ∈ ( 𝐷 ↑m 𝐴 ) ↔ 𝑓 : 𝐴 ⟶ 𝐷 ) ) |
| 5 |
|
simp2 |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) → 𝐸 ∈ On ) |
| 6 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → 𝐵 ∈ 𝑊 ) |
| 7 |
|
elmapg |
⊢ ( ( 𝐸 ∈ On ∧ 𝐵 ∈ 𝑊 ) → ( 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐸 ) ) |
| 8 |
5 6 7
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → ( 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐸 ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ 𝑓 : 𝐴 ⟶ 𝐷 ) → ( 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ↔ 𝑔 : 𝐵 ⟶ 𝐸 ) ) |
| 10 |
|
simpl |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) → 𝑓 : 𝐴 ⟶ 𝐷 ) |
| 11 |
10
|
ffnd |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) → 𝑓 Fn 𝐴 ) |
| 12 |
11
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝑓 Fn 𝐴 ) |
| 13 |
|
simpr |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) → 𝑔 : 𝐵 ⟶ 𝐸 ) |
| 14 |
13
|
ffnd |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) → 𝑔 Fn 𝐵 ) |
| 15 |
14
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝑔 Fn 𝐵 ) |
| 16 |
2
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝐴 ∈ 𝑉 ) |
| 17 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝐵 ∈ 𝑊 ) |
| 18 |
|
eqid |
⊢ ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ 𝐵 ) |
| 19 |
12 15 16 17 18
|
offn |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ∘f +o 𝑔 ) Fn ( 𝐴 ∩ 𝐵 ) ) |
| 20 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → 𝐶 = ( 𝐴 ∩ 𝐵 ) ) |
| 21 |
20
|
fneq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ↔ ( 𝑓 ∘f +o 𝑔 ) Fn ( 𝐴 ∩ 𝐵 ) ) ) |
| 22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ↔ ( 𝑓 ∘f +o 𝑔 ) Fn ( 𝐴 ∩ 𝐵 ) ) ) |
| 23 |
19 22
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ) |
| 24 |
|
fresin |
⊢ ( 𝑓 : 𝐴 ⟶ 𝐷 → ( 𝑓 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ 𝐷 ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) → ( 𝑓 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ 𝐷 ) |
| 26 |
25
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ 𝐷 ) |
| 27 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 28 |
20 27
|
eqsstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → 𝐶 ⊆ 𝐴 ) |
| 29 |
|
sseqin2 |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 30 |
28 29
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 31 |
30
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
| 32 |
31
|
feq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ↾ 𝐶 ) : ( 𝐴 ∩ 𝐶 ) ⟶ 𝐷 ↔ ( 𝑓 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) ) |
| 33 |
26 32
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ↾ 𝐶 ) : 𝐶 ⟶ 𝐷 ) |
| 34 |
33
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ 𝐷 ) |
| 35 |
5
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝐸 ∈ On ) |
| 36 |
1
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝐷 ∈ On ) |
| 37 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ 𝐷 ) → ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ On ) |
| 38 |
36 34 37
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ On ) |
| 39 |
|
fresin |
⊢ ( 𝑔 : 𝐵 ⟶ 𝐸 → ( 𝑔 ↾ 𝐶 ) : ( 𝐵 ∩ 𝐶 ) ⟶ 𝐸 ) |
| 40 |
39
|
adantl |
⊢ ( ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) → ( 𝑔 ↾ 𝐶 ) : ( 𝐵 ∩ 𝐶 ) ⟶ 𝐸 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑔 ↾ 𝐶 ) : ( 𝐵 ∩ 𝐶 ) ⟶ 𝐸 ) |
| 42 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 43 |
20 42
|
eqsstrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → 𝐶 ⊆ 𝐵 ) |
| 44 |
|
sseqin2 |
⊢ ( 𝐶 ⊆ 𝐵 ↔ ( 𝐵 ∩ 𝐶 ) = 𝐶 ) |
| 45 |
43 44
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝐵 ∩ 𝐶 ) = 𝐶 ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝐵 ∩ 𝐶 ) = 𝐶 ) |
| 47 |
46
|
feq2d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑔 ↾ 𝐶 ) : ( 𝐵 ∩ 𝐶 ) ⟶ 𝐸 ↔ ( 𝑔 ↾ 𝐶 ) : 𝐶 ⟶ 𝐸 ) ) |
| 48 |
41 47
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑔 ↾ 𝐶 ) : 𝐶 ⟶ 𝐸 ) |
| 49 |
48
|
ffvelcdmda |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ∈ 𝐸 ) |
| 50 |
|
oaordi |
⊢ ( ( 𝐸 ∈ On ∧ ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ On ) → ( ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ∈ 𝐸 → ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ∈ ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o 𝐸 ) ) ) |
| 51 |
50
|
imp |
⊢ ( ( ( 𝐸 ∈ On ∧ ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ On ) ∧ ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ∈ 𝐸 ) → ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ∈ ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o 𝐸 ) ) |
| 52 |
35 38 49 51
|
syl21anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ∈ ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o 𝐸 ) ) |
| 53 |
|
oveq1 |
⊢ ( 𝑑 = ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) → ( 𝑑 +o 𝐸 ) = ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o 𝐸 ) ) |
| 54 |
53
|
eliuni |
⊢ ( ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) ∈ 𝐷 ∧ ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ∈ ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o 𝐸 ) ) → ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ∈ ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) |
| 55 |
34 52 54
|
syl2anc |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ∈ ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) |
| 56 |
12 15 16 17 18
|
ofres |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ∘f +o 𝑔 ) = ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐵 ) ) ∘f +o ( 𝑔 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 57 |
20
|
reseq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝑓 ↾ 𝐶 ) = ( 𝑓 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 58 |
20
|
reseq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝑔 ↾ 𝐶 ) = ( 𝑔 ↾ ( 𝐴 ∩ 𝐵 ) ) ) |
| 59 |
57 58
|
oveq12d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) = ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐵 ) ) ∘f +o ( 𝑔 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 60 |
59
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) = ( ( 𝑓 ↾ ( 𝐴 ∩ 𝐵 ) ) ∘f +o ( 𝑔 ↾ ( 𝐴 ∩ 𝐵 ) ) ) ) |
| 61 |
56 60
|
eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ∘f +o 𝑔 ) = ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) ) |
| 62 |
61
|
fveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) ‘ 𝑐 ) = ( ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) ‘ 𝑐 ) ) |
| 63 |
62
|
adantr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑓 ∘f +o 𝑔 ) ‘ 𝑐 ) = ( ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) ‘ 𝑐 ) ) |
| 64 |
28
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝐶 ⊆ 𝐴 ) |
| 65 |
12 64
|
fnssresd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ↾ 𝐶 ) Fn 𝐶 ) |
| 66 |
43
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝐶 ⊆ 𝐵 ) |
| 67 |
15 66
|
fnssresd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑔 ↾ 𝐶 ) Fn 𝐶 ) |
| 68 |
65 67
|
jca |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ↾ 𝐶 ) Fn 𝐶 ∧ ( 𝑔 ↾ 𝐶 ) Fn 𝐶 ) ) |
| 69 |
|
inex1g |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 70 |
2 69
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → ( 𝐴 ∩ 𝐵 ) ∈ V ) |
| 71 |
20 70
|
eqeltrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) → 𝐶 ∈ V ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝐶 ∈ V ) |
| 73 |
72
|
anim1i |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( 𝐶 ∈ V ∧ 𝑐 ∈ 𝐶 ) ) |
| 74 |
|
fnfvof |
⊢ ( ( ( ( 𝑓 ↾ 𝐶 ) Fn 𝐶 ∧ ( 𝑔 ↾ 𝐶 ) Fn 𝐶 ) ∧ ( 𝐶 ∈ V ∧ 𝑐 ∈ 𝐶 ) ) → ( ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) ‘ 𝑐 ) = ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ) |
| 75 |
68 73 74
|
syl2an2r |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( ( 𝑓 ↾ 𝐶 ) ∘f +o ( 𝑔 ↾ 𝐶 ) ) ‘ 𝑐 ) = ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ) |
| 76 |
63 75
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑓 ∘f +o 𝑔 ) ‘ 𝑐 ) = ( ( ( 𝑓 ↾ 𝐶 ) ‘ 𝑐 ) +o ( ( 𝑔 ↾ 𝐶 ) ‘ 𝑐 ) ) ) |
| 77 |
|
simp3 |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) → 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) |
| 78 |
77
|
ad3antlr |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) |
| 79 |
55 76 78
|
3eltr4d |
⊢ ( ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ∧ 𝑐 ∈ 𝐶 ) → ( ( 𝑓 ∘f +o 𝑔 ) ‘ 𝑐 ) ∈ 𝐹 ) |
| 80 |
79
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ∀ 𝑐 ∈ 𝐶 ( ( 𝑓 ∘f +o 𝑔 ) ‘ 𝑐 ) ∈ 𝐹 ) |
| 81 |
|
fnfvrnss |
⊢ ( ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ∧ ∀ 𝑐 ∈ 𝐶 ( ( 𝑓 ∘f +o 𝑔 ) ‘ 𝑐 ) ∈ 𝐹 ) → ran ( 𝑓 ∘f +o 𝑔 ) ⊆ 𝐹 ) |
| 82 |
80 81
|
sylan2 |
⊢ ( ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ∧ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) ) → ran ( 𝑓 ∘f +o 𝑔 ) ⊆ 𝐹 ) |
| 83 |
82
|
expcom |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 → ran ( 𝑓 ∘f +o 𝑔 ) ⊆ 𝐹 ) ) |
| 84 |
23 83
|
jcai |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ∧ ran ( 𝑓 ∘f +o 𝑔 ) ⊆ 𝐹 ) ) |
| 85 |
|
onelon |
⊢ ( ( 𝐷 ∈ On ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ On ) |
| 86 |
85
|
adantlr |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ) ∧ 𝑑 ∈ 𝐷 ) → 𝑑 ∈ On ) |
| 87 |
|
simpr |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ) → 𝐸 ∈ On ) |
| 88 |
87
|
adantr |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ) ∧ 𝑑 ∈ 𝐷 ) → 𝐸 ∈ On ) |
| 89 |
|
oacl |
⊢ ( ( 𝑑 ∈ On ∧ 𝐸 ∈ On ) → ( 𝑑 +o 𝐸 ) ∈ On ) |
| 90 |
86 88 89
|
syl2anc |
⊢ ( ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ) ∧ 𝑑 ∈ 𝐷 ) → ( 𝑑 +o 𝐸 ) ∈ On ) |
| 91 |
90
|
ralrimiva |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ) → ∀ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ∈ On ) |
| 92 |
|
iunon |
⊢ ( ( 𝐷 ∈ On ∧ ∀ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ∈ On ) → ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ∈ On ) |
| 93 |
91 92
|
syldan |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ) → ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ∈ On ) |
| 94 |
93
|
3adant3 |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) → ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ∈ On ) |
| 95 |
77 94
|
eqeltrd |
⊢ ( ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) → 𝐹 ∈ On ) |
| 96 |
95
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → 𝐹 ∈ On ) |
| 97 |
96
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → 𝐹 ∈ On ) |
| 98 |
97 72
|
elmapd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ↔ ( 𝑓 ∘f +o 𝑔 ) : 𝐶 ⟶ 𝐹 ) ) |
| 99 |
|
df-f |
⊢ ( ( 𝑓 ∘f +o 𝑔 ) : 𝐶 ⟶ 𝐹 ↔ ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ∧ ran ( 𝑓 ∘f +o 𝑔 ) ⊆ 𝐹 ) ) |
| 100 |
98 99
|
bitrdi |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ↔ ( ( 𝑓 ∘f +o 𝑔 ) Fn 𝐶 ∧ ran ( 𝑓 ∘f +o 𝑔 ) ⊆ 𝐹 ) ) ) |
| 101 |
84 100
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ ( 𝑓 : 𝐴 ⟶ 𝐷 ∧ 𝑔 : 𝐵 ⟶ 𝐸 ) ) → ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) |
| 102 |
101
|
expr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ 𝑓 : 𝐴 ⟶ 𝐷 ) → ( 𝑔 : 𝐵 ⟶ 𝐸 → ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) ) |
| 103 |
9 102
|
sylbid |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ 𝑓 : 𝐴 ⟶ 𝐷 ) → ( 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) → ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) ) |
| 104 |
103
|
ralrimiv |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) ∧ 𝑓 : 𝐴 ⟶ 𝐷 ) → ∀ 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) |
| 105 |
104
|
ex |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → ( 𝑓 : 𝐴 ⟶ 𝐷 → ∀ 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) ) |
| 106 |
4 105
|
sylbid |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → ( 𝑓 ∈ ( 𝐷 ↑m 𝐴 ) → ∀ 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) ) |
| 107 |
106
|
ralrimiv |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → ∀ 𝑓 ∈ ( 𝐷 ↑m 𝐴 ) ∀ 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ) |
| 108 |
|
ofmres |
⊢ ( ∘f +o ↾ ( ( 𝐷 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ) = ( 𝑓 ∈ ( 𝐷 ↑m 𝐴 ) , 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ↦ ( 𝑓 ∘f +o 𝑔 ) ) |
| 109 |
108
|
fmpo |
⊢ ( ∀ 𝑓 ∈ ( 𝐷 ↑m 𝐴 ) ∀ 𝑔 ∈ ( 𝐸 ↑m 𝐵 ) ( 𝑓 ∘f +o 𝑔 ) ∈ ( 𝐹 ↑m 𝐶 ) ↔ ( ∘f +o ↾ ( ( 𝐷 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ) : ( ( 𝐷 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ⟶ ( 𝐹 ↑m 𝐶 ) ) |
| 110 |
107 109
|
sylib |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 = ( 𝐴 ∩ 𝐵 ) ) ∧ ( 𝐷 ∈ On ∧ 𝐸 ∈ On ∧ 𝐹 = ∪ 𝑑 ∈ 𝐷 ( 𝑑 +o 𝐸 ) ) ) → ( ∘f +o ↾ ( ( 𝐷 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ) : ( ( 𝐷 ↑m 𝐴 ) × ( 𝐸 ↑m 𝐵 ) ) ⟶ ( 𝐹 ↑m 𝐶 ) ) |