Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
|- ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> D e. On ) |
2 |
|
simp1 |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> A e. V ) |
3 |
|
elmapg |
|- ( ( D e. On /\ A e. V ) -> ( f e. ( D ^m A ) <-> f : A --> D ) ) |
4 |
1 2 3
|
syl2anr |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( f e. ( D ^m A ) <-> f : A --> D ) ) |
5 |
|
simp2 |
|- ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> E e. On ) |
6 |
|
simp2 |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> B e. W ) |
7 |
|
elmapg |
|- ( ( E e. On /\ B e. W ) -> ( g e. ( E ^m B ) <-> g : B --> E ) ) |
8 |
5 6 7
|
syl2anr |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( g e. ( E ^m B ) <-> g : B --> E ) ) |
9 |
8
|
adantr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> ( g e. ( E ^m B ) <-> g : B --> E ) ) |
10 |
|
simpl |
|- ( ( f : A --> D /\ g : B --> E ) -> f : A --> D ) |
11 |
10
|
ffnd |
|- ( ( f : A --> D /\ g : B --> E ) -> f Fn A ) |
12 |
11
|
adantl |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> f Fn A ) |
13 |
|
simpr |
|- ( ( f : A --> D /\ g : B --> E ) -> g : B --> E ) |
14 |
13
|
ffnd |
|- ( ( f : A --> D /\ g : B --> E ) -> g Fn B ) |
15 |
14
|
adantl |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> g Fn B ) |
16 |
2
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> A e. V ) |
17 |
6
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> B e. W ) |
18 |
|
eqid |
|- ( A i^i B ) = ( A i^i B ) |
19 |
12 15 16 17 18
|
offn |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) Fn ( A i^i B ) ) |
20 |
|
simp3 |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C = ( A i^i B ) ) |
21 |
20
|
fneq2d |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( ( f oF +o g ) Fn C <-> ( f oF +o g ) Fn ( A i^i B ) ) ) |
22 |
21
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) Fn C <-> ( f oF +o g ) Fn ( A i^i B ) ) ) |
23 |
19 22
|
mpbird |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) Fn C ) |
24 |
|
fresin |
|- ( f : A --> D -> ( f |` C ) : ( A i^i C ) --> D ) |
25 |
24
|
adantr |
|- ( ( f : A --> D /\ g : B --> E ) -> ( f |` C ) : ( A i^i C ) --> D ) |
26 |
25
|
adantl |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f |` C ) : ( A i^i C ) --> D ) |
27 |
|
inss1 |
|- ( A i^i B ) C_ A |
28 |
20 27
|
eqsstrdi |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C C_ A ) |
29 |
|
sseqin2 |
|- ( C C_ A <-> ( A i^i C ) = C ) |
30 |
28 29
|
sylib |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( A i^i C ) = C ) |
31 |
30
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( A i^i C ) = C ) |
32 |
31
|
feq2d |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f |` C ) : ( A i^i C ) --> D <-> ( f |` C ) : C --> D ) ) |
33 |
26 32
|
mpbid |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f |` C ) : C --> D ) |
34 |
33
|
ffvelcdmda |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f |` C ) ` c ) e. D ) |
35 |
5
|
ad3antlr |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> E e. On ) |
36 |
1
|
ad3antlr |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> D e. On ) |
37 |
|
onelon |
|- ( ( D e. On /\ ( ( f |` C ) ` c ) e. D ) -> ( ( f |` C ) ` c ) e. On ) |
38 |
36 34 37
|
syl2anc |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f |` C ) ` c ) e. On ) |
39 |
|
fresin |
|- ( g : B --> E -> ( g |` C ) : ( B i^i C ) --> E ) |
40 |
39
|
adantl |
|- ( ( f : A --> D /\ g : B --> E ) -> ( g |` C ) : ( B i^i C ) --> E ) |
41 |
40
|
adantl |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( g |` C ) : ( B i^i C ) --> E ) |
42 |
|
inss2 |
|- ( A i^i B ) C_ B |
43 |
20 42
|
eqsstrdi |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C C_ B ) |
44 |
|
sseqin2 |
|- ( C C_ B <-> ( B i^i C ) = C ) |
45 |
43 44
|
sylib |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( B i^i C ) = C ) |
46 |
45
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( B i^i C ) = C ) |
47 |
46
|
feq2d |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( g |` C ) : ( B i^i C ) --> E <-> ( g |` C ) : C --> E ) ) |
48 |
41 47
|
mpbid |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( g |` C ) : C --> E ) |
49 |
48
|
ffvelcdmda |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( g |` C ) ` c ) e. E ) |
50 |
|
oaordi |
|- ( ( E e. On /\ ( ( f |` C ) ` c ) e. On ) -> ( ( ( g |` C ) ` c ) e. E -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) ) |
51 |
50
|
imp |
|- ( ( ( E e. On /\ ( ( f |` C ) ` c ) e. On ) /\ ( ( g |` C ) ` c ) e. E ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) |
52 |
35 38 49 51
|
syl21anc |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) |
53 |
|
oveq1 |
|- ( d = ( ( f |` C ) ` c ) -> ( d +o E ) = ( ( ( f |` C ) ` c ) +o E ) ) |
54 |
53
|
eliuni |
|- ( ( ( ( f |` C ) ` c ) e. D /\ ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. U_ d e. D ( d +o E ) ) |
55 |
34 52 54
|
syl2anc |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. U_ d e. D ( d +o E ) ) |
56 |
12 15 16 17 18
|
ofres |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) = ( ( f |` ( A i^i B ) ) oF +o ( g |` ( A i^i B ) ) ) ) |
57 |
20
|
reseq2d |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( f |` C ) = ( f |` ( A i^i B ) ) ) |
58 |
20
|
reseq2d |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( g |` C ) = ( g |` ( A i^i B ) ) ) |
59 |
57 58
|
oveq12d |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( ( f |` C ) oF +o ( g |` C ) ) = ( ( f |` ( A i^i B ) ) oF +o ( g |` ( A i^i B ) ) ) ) |
60 |
59
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f |` C ) oF +o ( g |` C ) ) = ( ( f |` ( A i^i B ) ) oF +o ( g |` ( A i^i B ) ) ) ) |
61 |
56 60
|
eqtr4d |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) = ( ( f |` C ) oF +o ( g |` C ) ) ) |
62 |
61
|
fveq1d |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) ` c ) = ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) ) |
63 |
62
|
adantr |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f oF +o g ) ` c ) = ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) ) |
64 |
28
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> C C_ A ) |
65 |
12 64
|
fnssresd |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f |` C ) Fn C ) |
66 |
43
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> C C_ B ) |
67 |
15 66
|
fnssresd |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( g |` C ) Fn C ) |
68 |
65 67
|
jca |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f |` C ) Fn C /\ ( g |` C ) Fn C ) ) |
69 |
|
inex1g |
|- ( A e. V -> ( A i^i B ) e. _V ) |
70 |
2 69
|
syl |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( A i^i B ) e. _V ) |
71 |
20 70
|
eqeltrd |
|- ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C e. _V ) |
72 |
71
|
ad2antrr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> C e. _V ) |
73 |
72
|
anim1i |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( C e. _V /\ c e. C ) ) |
74 |
|
fnfvof |
|- ( ( ( ( f |` C ) Fn C /\ ( g |` C ) Fn C ) /\ ( C e. _V /\ c e. C ) ) -> ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) = ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) ) |
75 |
68 73 74
|
syl2an2r |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) = ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) ) |
76 |
63 75
|
eqtrd |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f oF +o g ) ` c ) = ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) ) |
77 |
|
simp3 |
|- ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> F = U_ d e. D ( d +o E ) ) |
78 |
77
|
ad3antlr |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> F = U_ d e. D ( d +o E ) ) |
79 |
55 76 78
|
3eltr4d |
|- ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f oF +o g ) ` c ) e. F ) |
80 |
79
|
ralrimiva |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> A. c e. C ( ( f oF +o g ) ` c ) e. F ) |
81 |
|
fnfvrnss |
|- ( ( ( f oF +o g ) Fn C /\ A. c e. C ( ( f oF +o g ) ` c ) e. F ) -> ran ( f oF +o g ) C_ F ) |
82 |
80 81
|
sylan2 |
|- ( ( ( f oF +o g ) Fn C /\ ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) ) -> ran ( f oF +o g ) C_ F ) |
83 |
82
|
expcom |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) Fn C -> ran ( f oF +o g ) C_ F ) ) |
84 |
23 83
|
jcai |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) Fn C /\ ran ( f oF +o g ) C_ F ) ) |
85 |
|
onelon |
|- ( ( D e. On /\ d e. D ) -> d e. On ) |
86 |
85
|
adantlr |
|- ( ( ( D e. On /\ E e. On ) /\ d e. D ) -> d e. On ) |
87 |
|
simpr |
|- ( ( D e. On /\ E e. On ) -> E e. On ) |
88 |
87
|
adantr |
|- ( ( ( D e. On /\ E e. On ) /\ d e. D ) -> E e. On ) |
89 |
|
oacl |
|- ( ( d e. On /\ E e. On ) -> ( d +o E ) e. On ) |
90 |
86 88 89
|
syl2anc |
|- ( ( ( D e. On /\ E e. On ) /\ d e. D ) -> ( d +o E ) e. On ) |
91 |
90
|
ralrimiva |
|- ( ( D e. On /\ E e. On ) -> A. d e. D ( d +o E ) e. On ) |
92 |
|
iunon |
|- ( ( D e. On /\ A. d e. D ( d +o E ) e. On ) -> U_ d e. D ( d +o E ) e. On ) |
93 |
91 92
|
syldan |
|- ( ( D e. On /\ E e. On ) -> U_ d e. D ( d +o E ) e. On ) |
94 |
93
|
3adant3 |
|- ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> U_ d e. D ( d +o E ) e. On ) |
95 |
77 94
|
eqeltrd |
|- ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> F e. On ) |
96 |
95
|
adantl |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> F e. On ) |
97 |
96
|
adantr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> F e. On ) |
98 |
97 72
|
elmapd |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) e. ( F ^m C ) <-> ( f oF +o g ) : C --> F ) ) |
99 |
|
df-f |
|- ( ( f oF +o g ) : C --> F <-> ( ( f oF +o g ) Fn C /\ ran ( f oF +o g ) C_ F ) ) |
100 |
98 99
|
bitrdi |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) e. ( F ^m C ) <-> ( ( f oF +o g ) Fn C /\ ran ( f oF +o g ) C_ F ) ) ) |
101 |
84 100
|
mpbird |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) e. ( F ^m C ) ) |
102 |
101
|
expr |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> ( g : B --> E -> ( f oF +o g ) e. ( F ^m C ) ) ) |
103 |
9 102
|
sylbid |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> ( g e. ( E ^m B ) -> ( f oF +o g ) e. ( F ^m C ) ) ) |
104 |
103
|
ralrimiv |
|- ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) |
105 |
104
|
ex |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( f : A --> D -> A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) ) |
106 |
4 105
|
sylbid |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( f e. ( D ^m A ) -> A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) ) |
107 |
106
|
ralrimiv |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> A. f e. ( D ^m A ) A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) |
108 |
|
ofmres |
|- ( oF +o |` ( ( D ^m A ) X. ( E ^m B ) ) ) = ( f e. ( D ^m A ) , g e. ( E ^m B ) |-> ( f oF +o g ) ) |
109 |
108
|
fmpo |
|- ( A. f e. ( D ^m A ) A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) <-> ( oF +o |` ( ( D ^m A ) X. ( E ^m B ) ) ) : ( ( D ^m A ) X. ( E ^m B ) ) --> ( F ^m C ) ) |
110 |
107 109
|
sylib |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( oF +o |` ( ( D ^m A ) X. ( E ^m B ) ) ) : ( ( D ^m A ) X. ( E ^m B ) ) --> ( F ^m C ) ) |