| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simp1 |  |-  ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> D e. On ) | 
						
							| 2 |  | simp1 |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> A e. V ) | 
						
							| 3 |  | elmapg |  |-  ( ( D e. On /\ A e. V ) -> ( f e. ( D ^m A ) <-> f : A --> D ) ) | 
						
							| 4 | 1 2 3 | syl2anr |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( f e. ( D ^m A ) <-> f : A --> D ) ) | 
						
							| 5 |  | simp2 |  |-  ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> E e. On ) | 
						
							| 6 |  | simp2 |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> B e. W ) | 
						
							| 7 |  | elmapg |  |-  ( ( E e. On /\ B e. W ) -> ( g e. ( E ^m B ) <-> g : B --> E ) ) | 
						
							| 8 | 5 6 7 | syl2anr |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( g e. ( E ^m B ) <-> g : B --> E ) ) | 
						
							| 9 | 8 | adantr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> ( g e. ( E ^m B ) <-> g : B --> E ) ) | 
						
							| 10 |  | simpl |  |-  ( ( f : A --> D /\ g : B --> E ) -> f : A --> D ) | 
						
							| 11 | 10 | ffnd |  |-  ( ( f : A --> D /\ g : B --> E ) -> f Fn A ) | 
						
							| 12 | 11 | adantl |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> f Fn A ) | 
						
							| 13 |  | simpr |  |-  ( ( f : A --> D /\ g : B --> E ) -> g : B --> E ) | 
						
							| 14 | 13 | ffnd |  |-  ( ( f : A --> D /\ g : B --> E ) -> g Fn B ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> g Fn B ) | 
						
							| 16 | 2 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> A e. V ) | 
						
							| 17 | 6 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> B e. W ) | 
						
							| 18 |  | eqid |  |-  ( A i^i B ) = ( A i^i B ) | 
						
							| 19 | 12 15 16 17 18 | offn |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) Fn ( A i^i B ) ) | 
						
							| 20 |  | simp3 |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C = ( A i^i B ) ) | 
						
							| 21 | 20 | fneq2d |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( ( f oF +o g ) Fn C <-> ( f oF +o g ) Fn ( A i^i B ) ) ) | 
						
							| 22 | 21 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) Fn C <-> ( f oF +o g ) Fn ( A i^i B ) ) ) | 
						
							| 23 | 19 22 | mpbird |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) Fn C ) | 
						
							| 24 |  | fresin |  |-  ( f : A --> D -> ( f |` C ) : ( A i^i C ) --> D ) | 
						
							| 25 | 24 | adantr |  |-  ( ( f : A --> D /\ g : B --> E ) -> ( f |` C ) : ( A i^i C ) --> D ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f |` C ) : ( A i^i C ) --> D ) | 
						
							| 27 |  | inss1 |  |-  ( A i^i B ) C_ A | 
						
							| 28 | 20 27 | eqsstrdi |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C C_ A ) | 
						
							| 29 |  | sseqin2 |  |-  ( C C_ A <-> ( A i^i C ) = C ) | 
						
							| 30 | 28 29 | sylib |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( A i^i C ) = C ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( A i^i C ) = C ) | 
						
							| 32 | 31 | feq2d |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f |` C ) : ( A i^i C ) --> D <-> ( f |` C ) : C --> D ) ) | 
						
							| 33 | 26 32 | mpbid |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f |` C ) : C --> D ) | 
						
							| 34 | 33 | ffvelcdmda |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f |` C ) ` c ) e. D ) | 
						
							| 35 | 5 | ad3antlr |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> E e. On ) | 
						
							| 36 | 1 | ad3antlr |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> D e. On ) | 
						
							| 37 |  | onelon |  |-  ( ( D e. On /\ ( ( f |` C ) ` c ) e. D ) -> ( ( f |` C ) ` c ) e. On ) | 
						
							| 38 | 36 34 37 | syl2anc |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f |` C ) ` c ) e. On ) | 
						
							| 39 |  | fresin |  |-  ( g : B --> E -> ( g |` C ) : ( B i^i C ) --> E ) | 
						
							| 40 | 39 | adantl |  |-  ( ( f : A --> D /\ g : B --> E ) -> ( g |` C ) : ( B i^i C ) --> E ) | 
						
							| 41 | 40 | adantl |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( g |` C ) : ( B i^i C ) --> E ) | 
						
							| 42 |  | inss2 |  |-  ( A i^i B ) C_ B | 
						
							| 43 | 20 42 | eqsstrdi |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C C_ B ) | 
						
							| 44 |  | sseqin2 |  |-  ( C C_ B <-> ( B i^i C ) = C ) | 
						
							| 45 | 43 44 | sylib |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( B i^i C ) = C ) | 
						
							| 46 | 45 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( B i^i C ) = C ) | 
						
							| 47 | 46 | feq2d |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( g |` C ) : ( B i^i C ) --> E <-> ( g |` C ) : C --> E ) ) | 
						
							| 48 | 41 47 | mpbid |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( g |` C ) : C --> E ) | 
						
							| 49 | 48 | ffvelcdmda |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( g |` C ) ` c ) e. E ) | 
						
							| 50 |  | oaordi |  |-  ( ( E e. On /\ ( ( f |` C ) ` c ) e. On ) -> ( ( ( g |` C ) ` c ) e. E -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) ) | 
						
							| 51 | 50 | imp |  |-  ( ( ( E e. On /\ ( ( f |` C ) ` c ) e. On ) /\ ( ( g |` C ) ` c ) e. E ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) | 
						
							| 52 | 35 38 49 51 | syl21anc |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) | 
						
							| 53 |  | oveq1 |  |-  ( d = ( ( f |` C ) ` c ) -> ( d +o E ) = ( ( ( f |` C ) ` c ) +o E ) ) | 
						
							| 54 | 53 | eliuni |  |-  ( ( ( ( f |` C ) ` c ) e. D /\ ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. ( ( ( f |` C ) ` c ) +o E ) ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. U_ d e. D ( d +o E ) ) | 
						
							| 55 | 34 52 54 | syl2anc |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) e. U_ d e. D ( d +o E ) ) | 
						
							| 56 | 12 15 16 17 18 | ofres |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) = ( ( f |` ( A i^i B ) ) oF +o ( g |` ( A i^i B ) ) ) ) | 
						
							| 57 | 20 | reseq2d |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( f |` C ) = ( f |` ( A i^i B ) ) ) | 
						
							| 58 | 20 | reseq2d |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( g |` C ) = ( g |` ( A i^i B ) ) ) | 
						
							| 59 | 57 58 | oveq12d |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( ( f |` C ) oF +o ( g |` C ) ) = ( ( f |` ( A i^i B ) ) oF +o ( g |` ( A i^i B ) ) ) ) | 
						
							| 60 | 59 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f |` C ) oF +o ( g |` C ) ) = ( ( f |` ( A i^i B ) ) oF +o ( g |` ( A i^i B ) ) ) ) | 
						
							| 61 | 56 60 | eqtr4d |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) = ( ( f |` C ) oF +o ( g |` C ) ) ) | 
						
							| 62 | 61 | fveq1d |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) ` c ) = ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) ) | 
						
							| 63 | 62 | adantr |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f oF +o g ) ` c ) = ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) ) | 
						
							| 64 | 28 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> C C_ A ) | 
						
							| 65 | 12 64 | fnssresd |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f |` C ) Fn C ) | 
						
							| 66 | 43 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> C C_ B ) | 
						
							| 67 | 15 66 | fnssresd |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( g |` C ) Fn C ) | 
						
							| 68 | 65 67 | jca |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f |` C ) Fn C /\ ( g |` C ) Fn C ) ) | 
						
							| 69 |  | inex1g |  |-  ( A e. V -> ( A i^i B ) e. _V ) | 
						
							| 70 | 2 69 | syl |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> ( A i^i B ) e. _V ) | 
						
							| 71 | 20 70 | eqeltrd |  |-  ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) -> C e. _V ) | 
						
							| 72 | 71 | ad2antrr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> C e. _V ) | 
						
							| 73 | 72 | anim1i |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( C e. _V /\ c e. C ) ) | 
						
							| 74 |  | fnfvof |  |-  ( ( ( ( f |` C ) Fn C /\ ( g |` C ) Fn C ) /\ ( C e. _V /\ c e. C ) ) -> ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) = ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) ) | 
						
							| 75 | 68 73 74 | syl2an2r |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( ( f |` C ) oF +o ( g |` C ) ) ` c ) = ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) ) | 
						
							| 76 | 63 75 | eqtrd |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f oF +o g ) ` c ) = ( ( ( f |` C ) ` c ) +o ( ( g |` C ) ` c ) ) ) | 
						
							| 77 |  | simp3 |  |-  ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> F = U_ d e. D ( d +o E ) ) | 
						
							| 78 | 77 | ad3antlr |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> F = U_ d e. D ( d +o E ) ) | 
						
							| 79 | 55 76 78 | 3eltr4d |  |-  ( ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) /\ c e. C ) -> ( ( f oF +o g ) ` c ) e. F ) | 
						
							| 80 | 79 | ralrimiva |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> A. c e. C ( ( f oF +o g ) ` c ) e. F ) | 
						
							| 81 |  | fnfvrnss |  |-  ( ( ( f oF +o g ) Fn C /\ A. c e. C ( ( f oF +o g ) ` c ) e. F ) -> ran ( f oF +o g ) C_ F ) | 
						
							| 82 | 80 81 | sylan2 |  |-  ( ( ( f oF +o g ) Fn C /\ ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) ) -> ran ( f oF +o g ) C_ F ) | 
						
							| 83 | 82 | expcom |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) Fn C -> ran ( f oF +o g ) C_ F ) ) | 
						
							| 84 | 23 83 | jcai |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) Fn C /\ ran ( f oF +o g ) C_ F ) ) | 
						
							| 85 |  | onelon |  |-  ( ( D e. On /\ d e. D ) -> d e. On ) | 
						
							| 86 | 85 | adantlr |  |-  ( ( ( D e. On /\ E e. On ) /\ d e. D ) -> d e. On ) | 
						
							| 87 |  | simpr |  |-  ( ( D e. On /\ E e. On ) -> E e. On ) | 
						
							| 88 | 87 | adantr |  |-  ( ( ( D e. On /\ E e. On ) /\ d e. D ) -> E e. On ) | 
						
							| 89 |  | oacl |  |-  ( ( d e. On /\ E e. On ) -> ( d +o E ) e. On ) | 
						
							| 90 | 86 88 89 | syl2anc |  |-  ( ( ( D e. On /\ E e. On ) /\ d e. D ) -> ( d +o E ) e. On ) | 
						
							| 91 | 90 | ralrimiva |  |-  ( ( D e. On /\ E e. On ) -> A. d e. D ( d +o E ) e. On ) | 
						
							| 92 |  | iunon |  |-  ( ( D e. On /\ A. d e. D ( d +o E ) e. On ) -> U_ d e. D ( d +o E ) e. On ) | 
						
							| 93 | 91 92 | syldan |  |-  ( ( D e. On /\ E e. On ) -> U_ d e. D ( d +o E ) e. On ) | 
						
							| 94 | 93 | 3adant3 |  |-  ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> U_ d e. D ( d +o E ) e. On ) | 
						
							| 95 | 77 94 | eqeltrd |  |-  ( ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) -> F e. On ) | 
						
							| 96 | 95 | adantl |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> F e. On ) | 
						
							| 97 | 96 | adantr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> F e. On ) | 
						
							| 98 | 97 72 | elmapd |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) e. ( F ^m C ) <-> ( f oF +o g ) : C --> F ) ) | 
						
							| 99 |  | df-f |  |-  ( ( f oF +o g ) : C --> F <-> ( ( f oF +o g ) Fn C /\ ran ( f oF +o g ) C_ F ) ) | 
						
							| 100 | 98 99 | bitrdi |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( ( f oF +o g ) e. ( F ^m C ) <-> ( ( f oF +o g ) Fn C /\ ran ( f oF +o g ) C_ F ) ) ) | 
						
							| 101 | 84 100 | mpbird |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ ( f : A --> D /\ g : B --> E ) ) -> ( f oF +o g ) e. ( F ^m C ) ) | 
						
							| 102 | 101 | expr |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> ( g : B --> E -> ( f oF +o g ) e. ( F ^m C ) ) ) | 
						
							| 103 | 9 102 | sylbid |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> ( g e. ( E ^m B ) -> ( f oF +o g ) e. ( F ^m C ) ) ) | 
						
							| 104 | 103 | ralrimiv |  |-  ( ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) /\ f : A --> D ) -> A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) | 
						
							| 105 | 104 | ex |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( f : A --> D -> A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) ) | 
						
							| 106 | 4 105 | sylbid |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( f e. ( D ^m A ) -> A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) ) | 
						
							| 107 | 106 | ralrimiv |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> A. f e. ( D ^m A ) A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) ) | 
						
							| 108 |  | ofmres |  |-  ( oF +o |` ( ( D ^m A ) X. ( E ^m B ) ) ) = ( f e. ( D ^m A ) , g e. ( E ^m B ) |-> ( f oF +o g ) ) | 
						
							| 109 | 108 | fmpo |  |-  ( A. f e. ( D ^m A ) A. g e. ( E ^m B ) ( f oF +o g ) e. ( F ^m C ) <-> ( oF +o |` ( ( D ^m A ) X. ( E ^m B ) ) ) : ( ( D ^m A ) X. ( E ^m B ) ) --> ( F ^m C ) ) | 
						
							| 110 | 107 109 | sylib |  |-  ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E e. On /\ F = U_ d e. D ( d +o E ) ) ) -> ( oF +o |` ( ( D ^m A ) X. ( E ^m B ) ) ) : ( ( D ^m A ) X. ( E ^m B ) ) --> ( F ^m C ) ) |