Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> E = ( _om ^o D ) ) |
2 |
|
omelon |
|- _om e. On |
3 |
|
simpl |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> D e. On ) |
4 |
|
oecl |
|- ( ( _om e. On /\ D e. On ) -> ( _om ^o D ) e. On ) |
5 |
2 3 4
|
sylancr |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> ( _om ^o D ) e. On ) |
6 |
1 5
|
eqeltrd |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> E e. On ) |
7 |
3 2
|
jctil |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> ( _om e. On /\ D e. On ) ) |
8 |
|
peano1 |
|- (/) e. _om |
9 |
|
oen0 |
|- ( ( ( _om e. On /\ D e. On ) /\ (/) e. _om ) -> (/) e. ( _om ^o D ) ) |
10 |
7 8 9
|
sylancl |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> (/) e. ( _om ^o D ) ) |
11 |
10 1
|
eleqtrrd |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> (/) e. E ) |
12 |
|
oveq1 |
|- ( x = (/) -> ( x +o E ) = ( (/) +o E ) ) |
13 |
12
|
sseq2d |
|- ( x = (/) -> ( E C_ ( x +o E ) <-> E C_ ( (/) +o E ) ) ) |
14 |
13
|
adantl |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x = (/) ) -> ( E C_ ( x +o E ) <-> E C_ ( (/) +o E ) ) ) |
15 |
|
oa0r |
|- ( E e. On -> ( (/) +o E ) = E ) |
16 |
6 15
|
syl |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> ( (/) +o E ) = E ) |
17 |
|
ssid |
|- ( (/) +o E ) C_ ( (/) +o E ) |
18 |
16 17
|
eqsstrrdi |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> E C_ ( (/) +o E ) ) |
19 |
11 14 18
|
rspcedvd |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> E. x e. E E C_ ( x +o E ) ) |
20 |
|
ssiun |
|- ( E. x e. E E C_ ( x +o E ) -> E C_ U_ x e. E ( x +o E ) ) |
21 |
19 20
|
syl |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> E C_ U_ x e. E ( x +o E ) ) |
22 |
1
|
eleq2d |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> ( x e. E <-> x e. ( _om ^o D ) ) ) |
23 |
22
|
biimpa |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x e. E ) -> x e. ( _om ^o D ) ) |
24 |
6
|
adantr |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x e. E ) -> E e. On ) |
25 |
1
|
adantr |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x e. E ) -> E = ( _om ^o D ) ) |
26 |
|
ssid |
|- E C_ E |
27 |
25 26
|
eqsstrrdi |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x e. E ) -> ( _om ^o D ) C_ E ) |
28 |
|
oaabs2 |
|- ( ( ( x e. ( _om ^o D ) /\ E e. On ) /\ ( _om ^o D ) C_ E ) -> ( x +o E ) = E ) |
29 |
23 24 27 28
|
syl21anc |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x e. E ) -> ( x +o E ) = E ) |
30 |
29 26
|
eqsstrdi |
|- ( ( ( D e. On /\ E = ( _om ^o D ) ) /\ x e. E ) -> ( x +o E ) C_ E ) |
31 |
30
|
iunssd |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> U_ x e. E ( x +o E ) C_ E ) |
32 |
21 31
|
eqssd |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> E = U_ x e. E ( x +o E ) ) |
33 |
6 6 32
|
3jca |
|- ( ( D e. On /\ E = ( _om ^o D ) ) -> ( E e. On /\ E e. On /\ E = U_ x e. E ( x +o E ) ) ) |
34 |
|
ofoafg |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( E e. On /\ E e. On /\ E = U_ x e. E ( x +o E ) ) ) -> ( oF +o |` ( ( E ^m A ) X. ( E ^m B ) ) ) : ( ( E ^m A ) X. ( E ^m B ) ) --> ( E ^m C ) ) |
35 |
33 34
|
sylan2 |
|- ( ( ( A e. V /\ B e. W /\ C = ( A i^i B ) ) /\ ( D e. On /\ E = ( _om ^o D ) ) ) -> ( oF +o |` ( ( E ^m A ) X. ( E ^m B ) ) ) : ( ( E ^m A ) X. ( E ^m B ) ) --> ( E ^m C ) ) |