Metamath Proof Explorer


Theorem ofoafg

Description: Addition operator for functions from sets into ordinals results in a function from the intersection of sets into an ordinal. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoafg A V B W C = A B D On E On F = d D d + 𝑜 E f + 𝑜 D A × E B : D A × E B F C

Proof

Step Hyp Ref Expression
1 simp1 D On E On F = d D d + 𝑜 E D On
2 simp1 A V B W C = A B A V
3 elmapg D On A V f D A f : A D
4 1 2 3 syl2anr A V B W C = A B D On E On F = d D d + 𝑜 E f D A f : A D
5 simp2 D On E On F = d D d + 𝑜 E E On
6 simp2 A V B W C = A B B W
7 elmapg E On B W g E B g : B E
8 5 6 7 syl2anr A V B W C = A B D On E On F = d D d + 𝑜 E g E B g : B E
9 8 adantr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g E B g : B E
10 simpl f : A D g : B E f : A D
11 10 ffnd f : A D g : B E f Fn A
12 11 adantl A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f Fn A
13 simpr f : A D g : B E g : B E
14 13 ffnd f : A D g : B E g Fn B
15 14 adantl A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E g Fn B
16 2 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E A V
17 6 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E B W
18 eqid A B = A B
19 12 15 16 17 18 offn A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g Fn A B
20 simp3 A V B W C = A B C = A B
21 20 fneq2d A V B W C = A B f + 𝑜 f g Fn C f + 𝑜 f g Fn A B
22 21 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g Fn C f + 𝑜 f g Fn A B
23 19 22 mpbird A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g Fn C
24 fresin f : A D f C : A C D
25 24 adantr f : A D g : B E f C : A C D
26 25 adantl A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f C : A C D
27 inss1 A B A
28 20 27 eqsstrdi A V B W C = A B C A
29 sseqin2 C A A C = C
30 28 29 sylib A V B W C = A B A C = C
31 30 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E A C = C
32 31 feq2d A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f C : A C D f C : C D
33 26 32 mpbid A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f C : C D
34 33 ffvelcdmda A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f C c D
35 5 ad3antlr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C E On
36 1 ad3antlr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C D On
37 onelon D On f C c D f C c On
38 36 34 37 syl2anc A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f C c On
39 fresin g : B E g C : B C E
40 39 adantl f : A D g : B E g C : B C E
41 40 adantl A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E g C : B C E
42 inss2 A B B
43 20 42 eqsstrdi A V B W C = A B C B
44 sseqin2 C B B C = C
45 43 44 sylib A V B W C = A B B C = C
46 45 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E B C = C
47 46 feq2d A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E g C : B C E g C : C E
48 41 47 mpbid A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E g C : C E
49 48 ffvelcdmda A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C g C c E
50 oaordi E On f C c On g C c E f C c + 𝑜 g C c f C c + 𝑜 E
51 50 imp E On f C c On g C c E f C c + 𝑜 g C c f C c + 𝑜 E
52 35 38 49 51 syl21anc A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f C c + 𝑜 g C c f C c + 𝑜 E
53 oveq1 d = f C c d + 𝑜 E = f C c + 𝑜 E
54 53 eliuni f C c D f C c + 𝑜 g C c f C c + 𝑜 E f C c + 𝑜 g C c d D d + 𝑜 E
55 34 52 54 syl2anc A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f C c + 𝑜 g C c d D d + 𝑜 E
56 12 15 16 17 18 ofres A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g = f A B + 𝑜 f g A B
57 20 reseq2d A V B W C = A B f C = f A B
58 20 reseq2d A V B W C = A B g C = g A B
59 57 58 oveq12d A V B W C = A B f C + 𝑜 f g C = f A B + 𝑜 f g A B
60 59 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f C + 𝑜 f g C = f A B + 𝑜 f g A B
61 56 60 eqtr4d A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g = f C + 𝑜 f g C
62 61 fveq1d A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g c = f C + 𝑜 f g C c
63 62 adantr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f + 𝑜 f g c = f C + 𝑜 f g C c
64 28 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E C A
65 12 64 fnssresd A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f C Fn C
66 43 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E C B
67 15 66 fnssresd A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E g C Fn C
68 65 67 jca A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f C Fn C g C Fn C
69 inex1g A V A B V
70 2 69 syl A V B W C = A B A B V
71 20 70 eqeltrd A V B W C = A B C V
72 71 ad2antrr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E C V
73 72 anim1i A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C C V c C
74 fnfvof f C Fn C g C Fn C C V c C f C + 𝑜 f g C c = f C c + 𝑜 g C c
75 68 73 74 syl2an2r A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f C + 𝑜 f g C c = f C c + 𝑜 g C c
76 63 75 eqtrd A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f + 𝑜 f g c = f C c + 𝑜 g C c
77 simp3 D On E On F = d D d + 𝑜 E F = d D d + 𝑜 E
78 77 ad3antlr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C F = d D d + 𝑜 E
79 55 76 78 3eltr4d A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f + 𝑜 f g c F
80 79 ralrimiva A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E c C f + 𝑜 f g c F
81 fnfvrnss f + 𝑜 f g Fn C c C f + 𝑜 f g c F ran f + 𝑜 f g F
82 80 81 sylan2 f + 𝑜 f g Fn C A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E ran f + 𝑜 f g F
83 82 expcom A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g Fn C ran f + 𝑜 f g F
84 23 83 jcai A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g Fn C ran f + 𝑜 f g F
85 onelon D On d D d On
86 85 adantlr D On E On d D d On
87 simpr D On E On E On
88 87 adantr D On E On d D E On
89 oacl d On E On d + 𝑜 E On
90 86 88 89 syl2anc D On E On d D d + 𝑜 E On
91 90 ralrimiva D On E On d D d + 𝑜 E On
92 iunon D On d D d + 𝑜 E On d D d + 𝑜 E On
93 91 92 syldan D On E On d D d + 𝑜 E On
94 93 3adant3 D On E On F = d D d + 𝑜 E d D d + 𝑜 E On
95 77 94 eqeltrd D On E On F = d D d + 𝑜 E F On
96 95 adantl A V B W C = A B D On E On F = d D d + 𝑜 E F On
97 96 adantr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E F On
98 97 72 elmapd A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g F C f + 𝑜 f g : C F
99 df-f f + 𝑜 f g : C F f + 𝑜 f g Fn C ran f + 𝑜 f g F
100 98 99 bitrdi A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g F C f + 𝑜 f g Fn C ran f + 𝑜 f g F
101 84 100 mpbird A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g F C
102 101 expr A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g : B E f + 𝑜 f g F C
103 9 102 sylbid A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g E B f + 𝑜 f g F C
104 103 ralrimiv A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g E B f + 𝑜 f g F C
105 104 ex A V B W C = A B D On E On F = d D d + 𝑜 E f : A D g E B f + 𝑜 f g F C
106 4 105 sylbid A V B W C = A B D On E On F = d D d + 𝑜 E f D A g E B f + 𝑜 f g F C
107 106 ralrimiv A V B W C = A B D On E On F = d D d + 𝑜 E f D A g E B f + 𝑜 f g F C
108 ofmres f + 𝑜 D A × E B = f D A , g E B f + 𝑜 f g
109 108 fmpo f D A g E B f + 𝑜 f g F C f + 𝑜 D A × E B : D A × E B F C
110 107 109 sylib A V B W C = A B D On E On F = d D d + 𝑜 E f + 𝑜 D A × E B : D A × E B F C