Metamath Proof Explorer


Theorem ofoaid1

Description: Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoaid1 AVBOnFBAF+𝑜fA×=F

Proof

Step Hyp Ref Expression
1 simpll AVBOnFBAAV
2 onss BOnBOn
3 sstr ranFBBOnranFOn
4 3 expcom BOnranFBranFOn
5 2 4 syl BOnranFBranFOn
6 5 anim2d BOnFFnAranFBFFnAranFOn
7 df-f F:ABFFnAranFB
8 df-f F:AOnFFnAranFOn
9 6 7 8 3imtr4g BOnF:ABF:AOn
10 elmapi FBAF:AB
11 9 10 impel BOnFBAF:AOn
12 11 adantll AVBOnFBAF:AOn
13 peano1 ω
14 fnconstg ωA×FnA
15 13 14 mp1i AVBOnFBAA×FnA
16 simp2 AVF:AOnA×FnAF:AOn
17 16 ffnd AVF:AOnA×FnAFFnA
18 simp3 AVF:AOnA×FnAA×FnA
19 simp1 AVF:AOnA×FnAAV
20 inidm AA=A
21 17 18 19 19 20 offn AVF:AOnA×FnAF+𝑜fA×FnA
22 17 18 jca AVF:AOnA×FnAFFnAA×FnA
23 22 adantr AVF:AOnA×FnAaAFFnAA×FnA
24 19 adantr AVF:AOnA×FnAaAAV
25 simpr AVF:AOnA×FnAaAaA
26 fnfvof FFnAA×FnAAVaAF+𝑜fA×a=Fa+𝑜A×a
27 23 24 25 26 syl12anc AVF:AOnA×FnAaAF+𝑜fA×a=Fa+𝑜A×a
28 fvconst2g ωaAA×a=
29 13 25 28 sylancr AVF:AOnA×FnAaAA×a=
30 29 oveq2d AVF:AOnA×FnAaAFa+𝑜A×a=Fa+𝑜
31 16 ffvelcdmda AVF:AOnA×FnAaAFaOn
32 oa0 FaOnFa+𝑜=Fa
33 31 32 syl AVF:AOnA×FnAaAFa+𝑜=Fa
34 27 30 33 3eqtrd AVF:AOnA×FnAaAF+𝑜fA×a=Fa
35 21 17 34 eqfnfvd AVF:AOnA×FnAF+𝑜fA×=F
36 1 12 15 35 syl3anc AVBOnFBAF+𝑜fA×=F