Description: Identity law for component wise addition of ordinal-yielding functions. (Contributed by RP, 5-Jan-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | ofoaid1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll | |
|
2 | onss | |
|
3 | sstr | |
|
4 | 3 | expcom | |
5 | 2 4 | syl | |
6 | 5 | anim2d | |
7 | df-f | |
|
8 | df-f | |
|
9 | 6 7 8 | 3imtr4g | |
10 | elmapi | |
|
11 | 9 10 | impel | |
12 | 11 | adantll | |
13 | peano1 | |
|
14 | fnconstg | |
|
15 | 13 14 | mp1i | |
16 | simp2 | |
|
17 | 16 | ffnd | |
18 | simp3 | |
|
19 | simp1 | |
|
20 | inidm | |
|
21 | 17 18 19 19 20 | offn | |
22 | 17 18 | jca | |
23 | 22 | adantr | |
24 | 19 | adantr | |
25 | simpr | |
|
26 | fnfvof | |
|
27 | 23 24 25 26 | syl12anc | |
28 | fvconst2g | |
|
29 | 13 25 28 | sylancr | |
30 | 29 | oveq2d | |
31 | 16 | ffvelcdmda | |
32 | oa0 | |
|
33 | 31 32 | syl | |
34 | 27 30 33 | 3eqtrd | |
35 | 21 17 34 | eqfnfvd | |
36 | 1 12 15 35 | syl3anc | |