| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elmapfn | ⊢ ( 𝐹  ∈  ( ω  ↑m  𝐴 )  →  𝐹  Fn  𝐴 ) | 
						
							| 2 | 1 | ad2antrl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  𝐹  Fn  𝐴 ) | 
						
							| 3 |  | elmapfn | ⊢ ( 𝐺  ∈  ( ω  ↑m  𝐴 )  →  𝐺  Fn  𝐴 ) | 
						
							| 4 | 3 | ad2antll | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  𝐺  Fn  𝐴 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  𝐴  ∈  𝑉 ) | 
						
							| 6 |  | inidm | ⊢ ( 𝐴  ∩  𝐴 )  =  𝐴 | 
						
							| 7 | 2 4 5 5 6 | offn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  ( 𝐹  ∘f   +o  𝐺 )  Fn  𝐴 ) | 
						
							| 8 | 4 2 5 5 6 | offn | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  ( 𝐺  ∘f   +o  𝐹 )  Fn  𝐴 ) | 
						
							| 9 |  | elmapi | ⊢ ( 𝐹  ∈  ( ω  ↑m  𝐴 )  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 10 | 9 | ad2antrl | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  𝐹 : 𝐴 ⟶ ω ) | 
						
							| 11 | 10 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐹 ‘ 𝑎 )  ∈  ω ) | 
						
							| 12 |  | elmapi | ⊢ ( 𝐺  ∈  ( ω  ↑m  𝐴 )  →  𝐺 : 𝐴 ⟶ ω ) | 
						
							| 13 | 12 | ad2antll | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  𝐺 : 𝐴 ⟶ ω ) | 
						
							| 14 | 13 | ffvelcdmda | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐺 ‘ 𝑎 )  ∈  ω ) | 
						
							| 15 |  | nnacom | ⊢ ( ( ( 𝐹 ‘ 𝑎 )  ∈  ω  ∧  ( 𝐺 ‘ 𝑎 )  ∈  ω )  →  ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) )  =  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 16 | 11 14 15 | syl2anc | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) )  =  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 17 | 2 4 | jca | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 ) ) | 
						
							| 18 | 5 | anim1i | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) ) | 
						
							| 19 |  | fnfvof | ⊢ ( ( ( 𝐹  Fn  𝐴  ∧  𝐺  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 20 | 17 18 19 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  =  ( ( 𝐹 ‘ 𝑎 )  +o  ( 𝐺 ‘ 𝑎 ) ) ) | 
						
							| 21 | 4 2 | jca | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  ( 𝐺  Fn  𝐴  ∧  𝐹  Fn  𝐴 ) ) | 
						
							| 22 |  | fnfvof | ⊢ ( ( ( 𝐺  Fn  𝐴  ∧  𝐹  Fn  𝐴 )  ∧  ( 𝐴  ∈  𝑉  ∧  𝑎  ∈  𝐴 ) )  →  ( ( 𝐺  ∘f   +o  𝐹 ) ‘ 𝑎 )  =  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 23 | 21 18 22 | syl2an2r | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐺  ∘f   +o  𝐹 ) ‘ 𝑎 )  =  ( ( 𝐺 ‘ 𝑎 )  +o  ( 𝐹 ‘ 𝑎 ) ) ) | 
						
							| 24 | 16 20 23 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  ∧  𝑎  ∈  𝐴 )  →  ( ( 𝐹  ∘f   +o  𝐺 ) ‘ 𝑎 )  =  ( ( 𝐺  ∘f   +o  𝐹 ) ‘ 𝑎 ) ) | 
						
							| 25 | 7 8 24 | eqfnfvd | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐹  ∈  ( ω  ↑m  𝐴 )  ∧  𝐺  ∈  ( ω  ↑m  𝐴 ) ) )  →  ( 𝐹  ∘f   +o  𝐺 )  =  ( 𝐺  ∘f   +o  𝐹 ) ) |