Step |
Hyp |
Ref |
Expression |
1 |
|
elmapfn |
⊢ ( 𝐹 ∈ ( ω ↑m 𝐴 ) → 𝐹 Fn 𝐴 ) |
2 |
1
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → 𝐹 Fn 𝐴 ) |
3 |
|
elmapfn |
⊢ ( 𝐺 ∈ ( ω ↑m 𝐴 ) → 𝐺 Fn 𝐴 ) |
4 |
3
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → 𝐺 Fn 𝐴 ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → 𝐴 ∈ 𝑉 ) |
6 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
7 |
2 4 5 5 6
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o 𝐺 ) Fn 𝐴 ) |
8 |
4 2 5 5 6
|
offn |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → ( 𝐺 ∘f +o 𝐹 ) Fn 𝐴 ) |
9 |
|
elmapi |
⊢ ( 𝐹 ∈ ( ω ↑m 𝐴 ) → 𝐹 : 𝐴 ⟶ ω ) |
10 |
9
|
ad2antrl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → 𝐹 : 𝐴 ⟶ ω ) |
11 |
10
|
ffvelcdmda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑎 ) ∈ ω ) |
12 |
|
elmapi |
⊢ ( 𝐺 ∈ ( ω ↑m 𝐴 ) → 𝐺 : 𝐴 ⟶ ω ) |
13 |
12
|
ad2antll |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → 𝐺 : 𝐴 ⟶ ω ) |
14 |
13
|
ffvelcdmda |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑎 ) ∈ ω ) |
15 |
|
nnacom |
⊢ ( ( ( 𝐹 ‘ 𝑎 ) ∈ ω ∧ ( 𝐺 ‘ 𝑎 ) ∈ ω ) → ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐹 ‘ 𝑎 ) ) ) |
16 |
11 14 15
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐹 ‘ 𝑎 ) ) ) |
17 |
2 4
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ) |
18 |
5
|
anim1i |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) |
19 |
|
fnfvof |
⊢ ( ( ( 𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) ) |
20 |
17 18 19
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐹 ‘ 𝑎 ) +o ( 𝐺 ‘ 𝑎 ) ) ) |
21 |
4 2
|
jca |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → ( 𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴 ) ) |
22 |
|
fnfvof |
⊢ ( ( ( 𝐺 Fn 𝐴 ∧ 𝐹 Fn 𝐴 ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝑎 ∈ 𝐴 ) ) → ( ( 𝐺 ∘f +o 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐹 ‘ 𝑎 ) ) ) |
23 |
21 18 22
|
syl2an2r |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐺 ∘f +o 𝐹 ) ‘ 𝑎 ) = ( ( 𝐺 ‘ 𝑎 ) +o ( 𝐹 ‘ 𝑎 ) ) ) |
24 |
16 20 23
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) ∧ 𝑎 ∈ 𝐴 ) → ( ( 𝐹 ∘f +o 𝐺 ) ‘ 𝑎 ) = ( ( 𝐺 ∘f +o 𝐹 ) ‘ 𝑎 ) ) |
25 |
7 8 24
|
eqfnfvd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐹 ∈ ( ω ↑m 𝐴 ) ∧ 𝐺 ∈ ( ω ↑m 𝐴 ) ) ) → ( 𝐹 ∘f +o 𝐺 ) = ( 𝐺 ∘f +o 𝐹 ) ) |