Metamath Proof Explorer


Theorem ofoacom

Description: Component-wise addition of natural numnber-yielding functions commutes. (Contributed by RP, 5-Jan-2025)

Ref Expression
Assertion ofoacom A V F ω A G ω A F + 𝑜 f G = G + 𝑜 f F

Proof

Step Hyp Ref Expression
1 elmapfn F ω A F Fn A
2 1 ad2antrl A V F ω A G ω A F Fn A
3 elmapfn G ω A G Fn A
4 3 ad2antll A V F ω A G ω A G Fn A
5 simpl A V F ω A G ω A A V
6 inidm A A = A
7 2 4 5 5 6 offn A V F ω A G ω A F + 𝑜 f G Fn A
8 4 2 5 5 6 offn A V F ω A G ω A G + 𝑜 f F Fn A
9 elmapi F ω A F : A ω
10 9 ad2antrl A V F ω A G ω A F : A ω
11 10 ffvelcdmda A V F ω A G ω A a A F a ω
12 elmapi G ω A G : A ω
13 12 ad2antll A V F ω A G ω A G : A ω
14 13 ffvelcdmda A V F ω A G ω A a A G a ω
15 nnacom F a ω G a ω F a + 𝑜 G a = G a + 𝑜 F a
16 11 14 15 syl2anc A V F ω A G ω A a A F a + 𝑜 G a = G a + 𝑜 F a
17 2 4 jca A V F ω A G ω A F Fn A G Fn A
18 5 anim1i A V F ω A G ω A a A A V a A
19 fnfvof F Fn A G Fn A A V a A F + 𝑜 f G a = F a + 𝑜 G a
20 17 18 19 syl2an2r A V F ω A G ω A a A F + 𝑜 f G a = F a + 𝑜 G a
21 4 2 jca A V F ω A G ω A G Fn A F Fn A
22 fnfvof G Fn A F Fn A A V a A G + 𝑜 f F a = G a + 𝑜 F a
23 21 18 22 syl2an2r A V F ω A G ω A a A G + 𝑜 f F a = G a + 𝑜 F a
24 16 20 23 3eqtr4d A V F ω A G ω A a A F + 𝑜 f G a = G + 𝑜 f F a
25 7 8 24 eqfnfvd A V F ω A G ω A F + 𝑜 f G = G + 𝑜 f F