| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
eleq2d |
|
| 3 |
|
eqid |
|
| 4 |
|
omelon |
|
| 5 |
4
|
a1i |
|
| 6 |
|
simpl |
|
| 7 |
3 5 6
|
cantnfs |
|
| 8 |
2 7
|
bitrd |
|
| 9 |
1
|
eleq2d |
|
| 10 |
3 5 6
|
cantnfs |
|
| 11 |
9 10
|
bitrd |
|
| 12 |
11
|
adantr |
|
| 13 |
|
simpl |
|
| 14 |
|
simpl |
|
| 15 |
13 14
|
anim12i |
|
| 16 |
6 15
|
anim12i |
|
| 17 |
16
|
anassrs |
|
| 18 |
|
simprl |
|
| 19 |
18
|
ffnd |
|
| 20 |
|
simprr |
|
| 21 |
20
|
ffnd |
|
| 22 |
|
simpl |
|
| 23 |
|
inidm |
|
| 24 |
19 21 22 22 23
|
offn |
|
| 25 |
|
simpr |
|
| 26 |
|
simplrl |
|
| 27 |
26
|
ffnd |
|
| 28 |
|
simplrr |
|
| 29 |
28
|
ffnd |
|
| 30 |
|
simpll |
|
| 31 |
|
simpr |
|
| 32 |
|
fnfvof |
|
| 33 |
27 29 30 31 32
|
syl22anc |
|
| 34 |
18
|
ffvelcdmda |
|
| 35 |
20
|
ffvelcdmda |
|
| 36 |
|
nnacl |
|
| 37 |
34 35 36
|
syl2anc |
|
| 38 |
33 37
|
eqeltrd |
|
| 39 |
38
|
ex |
|
| 40 |
39
|
ralrimiv |
|
| 41 |
40
|
adantr |
|
| 42 |
|
fnfvrnss |
|
| 43 |
25 41 42
|
syl2anc |
|
| 44 |
43
|
ex |
|
| 45 |
24 44
|
jcai |
|
| 46 |
|
df-f |
|
| 47 |
45 46
|
sylibr |
|
| 48 |
17 47
|
syl |
|
| 49 |
|
ffun |
|
| 50 |
49
|
adantl |
|
| 51 |
|
simplrr |
|
| 52 |
51
|
adantr |
|
| 53 |
|
simplrr |
|
| 54 |
52 53
|
fsuppunfi |
|
| 55 |
|
simp-4l |
|
| 56 |
|
peano1 |
|
| 57 |
56
|
a1i |
|
| 58 |
|
simplrl |
|
| 59 |
58
|
adantr |
|
| 60 |
|
simplrl |
|
| 61 |
|
0elon |
|
| 62 |
|
oa0 |
|
| 63 |
61 62
|
mp1i |
|
| 64 |
55 57 59 60 63
|
suppofssd |
|
| 65 |
54 64
|
ssfid |
|
| 66 |
|
ovexd |
|
| 67 |
|
isfsupp |
|
| 68 |
66 61 67
|
sylancl |
|
| 69 |
50 65 68
|
mpbir2and |
|
| 70 |
69
|
ex |
|
| 71 |
48 70
|
jcai |
|
| 72 |
1
|
eleq2d |
|
| 73 |
3 5 6
|
cantnfs |
|
| 74 |
72 73
|
bitrd |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
71 75
|
mpbird |
|
| 77 |
76
|
ex |
|
| 78 |
12 77
|
sylbid |
|
| 79 |
78
|
ralrimiv |
|
| 80 |
79
|
ex |
|
| 81 |
8 80
|
sylbid |
|
| 82 |
81
|
ralrimiv |
|
| 83 |
|
ofmres |
|
| 84 |
83
|
fmpo |
|
| 85 |
82 84
|
sylib |
|