Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|
2 |
1
|
eleq2d |
|
3 |
|
eqid |
|
4 |
|
omelon |
|
5 |
4
|
a1i |
|
6 |
|
simpl |
|
7 |
3 5 6
|
cantnfs |
|
8 |
2 7
|
bitrd |
|
9 |
1
|
eleq2d |
|
10 |
3 5 6
|
cantnfs |
|
11 |
9 10
|
bitrd |
|
12 |
11
|
adantr |
|
13 |
|
simpl |
|
14 |
|
simpl |
|
15 |
13 14
|
anim12i |
|
16 |
6 15
|
anim12i |
|
17 |
16
|
anassrs |
|
18 |
|
simprl |
|
19 |
18
|
ffnd |
|
20 |
|
simprr |
|
21 |
20
|
ffnd |
|
22 |
|
simpl |
|
23 |
|
inidm |
|
24 |
19 21 22 22 23
|
offn |
|
25 |
|
simpr |
|
26 |
|
simplrl |
|
27 |
26
|
ffnd |
|
28 |
|
simplrr |
|
29 |
28
|
ffnd |
|
30 |
|
simpll |
|
31 |
|
simpr |
|
32 |
|
fnfvof |
|
33 |
27 29 30 31 32
|
syl22anc |
|
34 |
18
|
ffvelcdmda |
|
35 |
20
|
ffvelcdmda |
|
36 |
|
nnacl |
|
37 |
34 35 36
|
syl2anc |
|
38 |
33 37
|
eqeltrd |
|
39 |
38
|
ex |
|
40 |
39
|
ralrimiv |
|
41 |
40
|
adantr |
|
42 |
|
fnfvrnss |
|
43 |
25 41 42
|
syl2anc |
|
44 |
43
|
ex |
|
45 |
24 44
|
jcai |
|
46 |
|
df-f |
|
47 |
45 46
|
sylibr |
|
48 |
17 47
|
syl |
|
49 |
|
ffun |
|
50 |
49
|
adantl |
|
51 |
|
simplrr |
|
52 |
51
|
adantr |
|
53 |
|
simplrr |
|
54 |
52 53
|
fsuppunfi |
|
55 |
|
simp-4l |
|
56 |
|
peano1 |
|
57 |
56
|
a1i |
|
58 |
|
simplrl |
|
59 |
58
|
adantr |
|
60 |
|
simplrl |
|
61 |
|
0elon |
|
62 |
|
oa0 |
|
63 |
61 62
|
mp1i |
|
64 |
55 57 59 60 63
|
suppofssd |
|
65 |
54 64
|
ssfid |
|
66 |
|
ovexd |
|
67 |
|
isfsupp |
|
68 |
66 61 67
|
sylancl |
|
69 |
50 65 68
|
mpbir2and |
|
70 |
69
|
ex |
|
71 |
48 70
|
jcai |
|
72 |
1
|
eleq2d |
|
73 |
3 5 6
|
cantnfs |
|
74 |
72 73
|
bitrd |
|
75 |
74
|
ad2antrr |
|
76 |
71 75
|
mpbird |
|
77 |
76
|
ex |
|
78 |
12 77
|
sylbid |
|
79 |
78
|
ralrimiv |
|
80 |
79
|
ex |
|
81 |
8 80
|
sylbid |
|
82 |
81
|
ralrimiv |
|
83 |
|
ofmres |
|
84 |
83
|
fmpo |
|
85 |
82 84
|
sylib |
|