Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> S = dom ( _om CNF X ) ) |
2 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. S <-> f e. dom ( _om CNF X ) ) ) |
3 |
|
eqid |
|- dom ( _om CNF X ) = dom ( _om CNF X ) |
4 |
|
omelon |
|- _om e. On |
5 |
4
|
a1i |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> _om e. On ) |
6 |
|
simpl |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> X e. On ) |
7 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. dom ( _om CNF X ) <-> ( f : X --> _om /\ f finSupp (/) ) ) ) |
8 |
2 7
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. S <-> ( f : X --> _om /\ f finSupp (/) ) ) ) |
9 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( g e. S <-> g e. dom ( _om CNF X ) ) ) |
10 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( g e. dom ( _om CNF X ) <-> ( g : X --> _om /\ g finSupp (/) ) ) ) |
11 |
9 10
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( g e. S <-> ( g : X --> _om /\ g finSupp (/) ) ) ) |
12 |
11
|
adantr |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) -> ( g e. S <-> ( g : X --> _om /\ g finSupp (/) ) ) ) |
13 |
|
simpl |
|- ( ( f : X --> _om /\ f finSupp (/) ) -> f : X --> _om ) |
14 |
|
simpl |
|- ( ( g : X --> _om /\ g finSupp (/) ) -> g : X --> _om ) |
15 |
13 14
|
anim12i |
|- ( ( ( f : X --> _om /\ f finSupp (/) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( f : X --> _om /\ g : X --> _om ) ) |
16 |
6 15
|
anim12i |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( ( f : X --> _om /\ f finSupp (/) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) ) -> ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) ) |
17 |
16
|
anassrs |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) ) |
18 |
|
simprl |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> f : X --> _om ) |
19 |
18
|
ffnd |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> f Fn X ) |
20 |
|
simprr |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> g : X --> _om ) |
21 |
20
|
ffnd |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> g Fn X ) |
22 |
|
simpl |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> X e. On ) |
23 |
|
inidm |
|- ( X i^i X ) = X |
24 |
19 21 22 22 23
|
offn |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> ( f oF +o g ) Fn X ) |
25 |
|
simpr |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ ( f oF +o g ) Fn X ) -> ( f oF +o g ) Fn X ) |
26 |
|
simplrl |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> f : X --> _om ) |
27 |
26
|
ffnd |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> f Fn X ) |
28 |
|
simplrr |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> g : X --> _om ) |
29 |
28
|
ffnd |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> g Fn X ) |
30 |
|
simpll |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> X e. On ) |
31 |
|
simpr |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> x e. X ) |
32 |
|
fnfvof |
|- ( ( ( f Fn X /\ g Fn X ) /\ ( X e. On /\ x e. X ) ) -> ( ( f oF +o g ) ` x ) = ( ( f ` x ) +o ( g ` x ) ) ) |
33 |
27 29 30 31 32
|
syl22anc |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> ( ( f oF +o g ) ` x ) = ( ( f ` x ) +o ( g ` x ) ) ) |
34 |
18
|
ffvelcdmda |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> ( f ` x ) e. _om ) |
35 |
20
|
ffvelcdmda |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> ( g ` x ) e. _om ) |
36 |
|
nnacl |
|- ( ( ( f ` x ) e. _om /\ ( g ` x ) e. _om ) -> ( ( f ` x ) +o ( g ` x ) ) e. _om ) |
37 |
34 35 36
|
syl2anc |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> ( ( f ` x ) +o ( g ` x ) ) e. _om ) |
38 |
33 37
|
eqeltrd |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ x e. X ) -> ( ( f oF +o g ) ` x ) e. _om ) |
39 |
38
|
ex |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> ( x e. X -> ( ( f oF +o g ) ` x ) e. _om ) ) |
40 |
39
|
ralrimiv |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> A. x e. X ( ( f oF +o g ) ` x ) e. _om ) |
41 |
40
|
adantr |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ ( f oF +o g ) Fn X ) -> A. x e. X ( ( f oF +o g ) ` x ) e. _om ) |
42 |
|
fnfvrnss |
|- ( ( ( f oF +o g ) Fn X /\ A. x e. X ( ( f oF +o g ) ` x ) e. _om ) -> ran ( f oF +o g ) C_ _om ) |
43 |
25 41 42
|
syl2anc |
|- ( ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) /\ ( f oF +o g ) Fn X ) -> ran ( f oF +o g ) C_ _om ) |
44 |
43
|
ex |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> ( ( f oF +o g ) Fn X -> ran ( f oF +o g ) C_ _om ) ) |
45 |
24 44
|
jcai |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> ( ( f oF +o g ) Fn X /\ ran ( f oF +o g ) C_ _om ) ) |
46 |
|
df-f |
|- ( ( f oF +o g ) : X --> _om <-> ( ( f oF +o g ) Fn X /\ ran ( f oF +o g ) C_ _om ) ) |
47 |
45 46
|
sylibr |
|- ( ( X e. On /\ ( f : X --> _om /\ g : X --> _om ) ) -> ( f oF +o g ) : X --> _om ) |
48 |
17 47
|
syl |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( f oF +o g ) : X --> _om ) |
49 |
|
ffun |
|- ( ( f oF +o g ) : X --> _om -> Fun ( f oF +o g ) ) |
50 |
49
|
adantl |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> Fun ( f oF +o g ) ) |
51 |
|
simplrr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> f finSupp (/) ) |
52 |
51
|
adantr |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> f finSupp (/) ) |
53 |
|
simplrr |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> g finSupp (/) ) |
54 |
52 53
|
fsuppunfi |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( ( f supp (/) ) u. ( g supp (/) ) ) e. Fin ) |
55 |
|
simp-4l |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> X e. On ) |
56 |
|
peano1 |
|- (/) e. _om |
57 |
56
|
a1i |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> (/) e. _om ) |
58 |
|
simplrl |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> f : X --> _om ) |
59 |
58
|
adantr |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> f : X --> _om ) |
60 |
|
simplrl |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> g : X --> _om ) |
61 |
|
0elon |
|- (/) e. On |
62 |
|
oa0 |
|- ( (/) e. On -> ( (/) +o (/) ) = (/) ) |
63 |
61 62
|
mp1i |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( (/) +o (/) ) = (/) ) |
64 |
55 57 59 60 63
|
suppofssd |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( ( f oF +o g ) supp (/) ) C_ ( ( f supp (/) ) u. ( g supp (/) ) ) ) |
65 |
54 64
|
ssfid |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( ( f oF +o g ) supp (/) ) e. Fin ) |
66 |
|
ovexd |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( f oF +o g ) e. _V ) |
67 |
|
isfsupp |
|- ( ( ( f oF +o g ) e. _V /\ (/) e. On ) -> ( ( f oF +o g ) finSupp (/) <-> ( Fun ( f oF +o g ) /\ ( ( f oF +o g ) supp (/) ) e. Fin ) ) ) |
68 |
66 61 67
|
sylancl |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( ( f oF +o g ) finSupp (/) <-> ( Fun ( f oF +o g ) /\ ( ( f oF +o g ) supp (/) ) e. Fin ) ) ) |
69 |
50 65 68
|
mpbir2and |
|- ( ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) /\ ( f oF +o g ) : X --> _om ) -> ( f oF +o g ) finSupp (/) ) |
70 |
69
|
ex |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( ( f oF +o g ) : X --> _om -> ( f oF +o g ) finSupp (/) ) ) |
71 |
48 70
|
jcai |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( ( f oF +o g ) : X --> _om /\ ( f oF +o g ) finSupp (/) ) ) |
72 |
1
|
eleq2d |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( f oF +o g ) e. S <-> ( f oF +o g ) e. dom ( _om CNF X ) ) ) |
73 |
3 5 6
|
cantnfs |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( f oF +o g ) e. dom ( _om CNF X ) <-> ( ( f oF +o g ) : X --> _om /\ ( f oF +o g ) finSupp (/) ) ) ) |
74 |
72 73
|
bitrd |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( f oF +o g ) e. S <-> ( ( f oF +o g ) : X --> _om /\ ( f oF +o g ) finSupp (/) ) ) ) |
75 |
74
|
ad2antrr |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( ( f oF +o g ) e. S <-> ( ( f oF +o g ) : X --> _om /\ ( f oF +o g ) finSupp (/) ) ) ) |
76 |
71 75
|
mpbird |
|- ( ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) /\ ( g : X --> _om /\ g finSupp (/) ) ) -> ( f oF +o g ) e. S ) |
77 |
76
|
ex |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) -> ( ( g : X --> _om /\ g finSupp (/) ) -> ( f oF +o g ) e. S ) ) |
78 |
12 77
|
sylbid |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) -> ( g e. S -> ( f oF +o g ) e. S ) ) |
79 |
78
|
ralrimiv |
|- ( ( ( X e. On /\ S = dom ( _om CNF X ) ) /\ ( f : X --> _om /\ f finSupp (/) ) ) -> A. g e. S ( f oF +o g ) e. S ) |
80 |
79
|
ex |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( ( f : X --> _om /\ f finSupp (/) ) -> A. g e. S ( f oF +o g ) e. S ) ) |
81 |
8 80
|
sylbid |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( f e. S -> A. g e. S ( f oF +o g ) e. S ) ) |
82 |
81
|
ralrimiv |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> A. f e. S A. g e. S ( f oF +o g ) e. S ) |
83 |
|
ofmres |
|- ( oF +o |` ( S X. S ) ) = ( f e. S , g e. S |-> ( f oF +o g ) ) |
84 |
83
|
fmpo |
|- ( A. f e. S A. g e. S ( f oF +o g ) e. S <-> ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S ) |
85 |
82 84
|
sylib |
|- ( ( X e. On /\ S = dom ( _om CNF X ) ) -> ( oF +o |` ( S X. S ) ) : ( S X. S ) --> S ) |