Description: Any well-orderable set is strictly dominated by an ordinal number. (Contributed by Jeff Hankins, 22-Oct-2009) (Proof shortened by Mario Carneiro, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onsdom | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | harcl | ⊢ ( har ‘ 𝐴 ) ∈ On | |
| 2 | harsdom | ⊢ ( 𝐴 ∈ dom card → 𝐴 ≺ ( har ‘ 𝐴 ) ) | |
| 3 | breq2 | ⊢ ( 𝑥 = ( har ‘ 𝐴 ) → ( 𝐴 ≺ 𝑥 ↔ 𝐴 ≺ ( har ‘ 𝐴 ) ) ) | |
| 4 | 3 | rspcev | ⊢ ( ( ( har ‘ 𝐴 ) ∈ On ∧ 𝐴 ≺ ( har ‘ 𝐴 ) ) → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |
| 5 | 1 2 4 | sylancr | ⊢ ( 𝐴 ∈ dom card → ∃ 𝑥 ∈ On 𝐴 ≺ 𝑥 ) |