| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldif | ⊢ ( Rel  𝐴  →  Rel  ( 𝐴  ∖   I  ) ) | 
						
							| 2 |  | brrelex2 | ⊢ ( ( Rel  ( 𝐴  ∖   I  )  ∧  𝑋 ( 𝐴  ∖   I  ) 𝑌 )  →  𝑌  ∈  V ) | 
						
							| 3 | 1 2 | sylan | ⊢ ( ( Rel  𝐴  ∧  𝑋 ( 𝐴  ∖   I  ) 𝑌 )  →  𝑌  ∈  V ) | 
						
							| 4 |  | brrelex2 | ⊢ ( ( Rel  𝐴  ∧  𝑋 𝐴 𝑌 )  →  𝑌  ∈  V ) | 
						
							| 5 | 4 | adantrr | ⊢ ( ( Rel  𝐴  ∧  ( 𝑋 𝐴 𝑌  ∧  𝑋  ≠  𝑌 ) )  →  𝑌  ∈  V ) | 
						
							| 6 |  | brdif | ⊢ ( 𝑋 ( 𝐴  ∖   I  ) 𝑌  ↔  ( 𝑋 𝐴 𝑌  ∧  ¬  𝑋  I  𝑌 ) ) | 
						
							| 7 |  | ideqg | ⊢ ( 𝑌  ∈  V  →  ( 𝑋  I  𝑌  ↔  𝑋  =  𝑌 ) ) | 
						
							| 8 | 7 | necon3bbid | ⊢ ( 𝑌  ∈  V  →  ( ¬  𝑋  I  𝑌  ↔  𝑋  ≠  𝑌 ) ) | 
						
							| 9 | 8 | anbi2d | ⊢ ( 𝑌  ∈  V  →  ( ( 𝑋 𝐴 𝑌  ∧  ¬  𝑋  I  𝑌 )  ↔  ( 𝑋 𝐴 𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 10 | 6 9 | bitrid | ⊢ ( 𝑌  ∈  V  →  ( 𝑋 ( 𝐴  ∖   I  ) 𝑌  ↔  ( 𝑋 𝐴 𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 11 | 3 5 10 | pm5.21nd | ⊢ ( Rel  𝐴  →  ( 𝑋 ( 𝐴  ∖   I  ) 𝑌  ↔  ( 𝑋 𝐴 𝑌  ∧  𝑋  ≠  𝑌 ) ) ) | 
						
							| 12 |  | df-br | ⊢ ( 𝑋 ( 𝐴  ∖   I  ) 𝑌  ↔  〈 𝑋 ,  𝑌 〉  ∈  ( 𝐴  ∖   I  ) ) | 
						
							| 13 |  | df-br | ⊢ ( 𝑋 𝐴 𝑌  ↔  〈 𝑋 ,  𝑌 〉  ∈  𝐴 ) | 
						
							| 14 | 13 | anbi1i | ⊢ ( ( 𝑋 𝐴 𝑌  ∧  𝑋  ≠  𝑌 )  ↔  ( 〈 𝑋 ,  𝑌 〉  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) ) | 
						
							| 15 | 11 12 14 | 3bitr3g | ⊢ ( Rel  𝐴  →  ( 〈 𝑋 ,  𝑌 〉  ∈  ( 𝐴  ∖   I  )  ↔  ( 〈 𝑋 ,  𝑌 〉  ∈  𝐴  ∧  𝑋  ≠  𝑌 ) ) ) |