| Step | Hyp | Ref | Expression | 
						
							| 1 |  | reldif |  |-  ( Rel A -> Rel ( A \ _I ) ) | 
						
							| 2 |  | brrelex2 |  |-  ( ( Rel ( A \ _I ) /\ X ( A \ _I ) Y ) -> Y e. _V ) | 
						
							| 3 | 1 2 | sylan |  |-  ( ( Rel A /\ X ( A \ _I ) Y ) -> Y e. _V ) | 
						
							| 4 |  | brrelex2 |  |-  ( ( Rel A /\ X A Y ) -> Y e. _V ) | 
						
							| 5 | 4 | adantrr |  |-  ( ( Rel A /\ ( X A Y /\ X =/= Y ) ) -> Y e. _V ) | 
						
							| 6 |  | brdif |  |-  ( X ( A \ _I ) Y <-> ( X A Y /\ -. X _I Y ) ) | 
						
							| 7 |  | ideqg |  |-  ( Y e. _V -> ( X _I Y <-> X = Y ) ) | 
						
							| 8 | 7 | necon3bbid |  |-  ( Y e. _V -> ( -. X _I Y <-> X =/= Y ) ) | 
						
							| 9 | 8 | anbi2d |  |-  ( Y e. _V -> ( ( X A Y /\ -. X _I Y ) <-> ( X A Y /\ X =/= Y ) ) ) | 
						
							| 10 | 6 9 | bitrid |  |-  ( Y e. _V -> ( X ( A \ _I ) Y <-> ( X A Y /\ X =/= Y ) ) ) | 
						
							| 11 | 3 5 10 | pm5.21nd |  |-  ( Rel A -> ( X ( A \ _I ) Y <-> ( X A Y /\ X =/= Y ) ) ) | 
						
							| 12 |  | df-br |  |-  ( X ( A \ _I ) Y <-> <. X , Y >. e. ( A \ _I ) ) | 
						
							| 13 |  | df-br |  |-  ( X A Y <-> <. X , Y >. e. A ) | 
						
							| 14 | 13 | anbi1i |  |-  ( ( X A Y /\ X =/= Y ) <-> ( <. X , Y >. e. A /\ X =/= Y ) ) | 
						
							| 15 | 11 12 14 | 3bitr3g |  |-  ( Rel A -> ( <. X , Y >. e. ( A \ _I ) <-> ( <. X , Y >. e. A /\ X =/= Y ) ) ) |