| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res |  |-  ( C |` B ) = ( C i^i ( B X. _V ) ) | 
						
							| 2 | 1 | difeq2i |  |-  ( A \ ( C |` B ) ) = ( A \ ( C i^i ( B X. _V ) ) ) | 
						
							| 3 |  | difindi |  |-  ( A \ ( C i^i ( B X. _V ) ) ) = ( ( A \ C ) u. ( A \ ( B X. _V ) ) ) | 
						
							| 4 |  | ssdif |  |-  ( A C_ ( B X. _V ) -> ( A \ ( B X. _V ) ) C_ ( ( B X. _V ) \ ( B X. _V ) ) ) | 
						
							| 5 |  | difid |  |-  ( ( B X. _V ) \ ( B X. _V ) ) = (/) | 
						
							| 6 | 4 5 | sseqtrdi |  |-  ( A C_ ( B X. _V ) -> ( A \ ( B X. _V ) ) C_ (/) ) | 
						
							| 7 |  | ss0 |  |-  ( ( A \ ( B X. _V ) ) C_ (/) -> ( A \ ( B X. _V ) ) = (/) ) | 
						
							| 8 | 6 7 | syl |  |-  ( A C_ ( B X. _V ) -> ( A \ ( B X. _V ) ) = (/) ) | 
						
							| 9 | 8 | uneq2d |  |-  ( A C_ ( B X. _V ) -> ( ( A \ C ) u. ( A \ ( B X. _V ) ) ) = ( ( A \ C ) u. (/) ) ) | 
						
							| 10 | 3 9 | eqtrid |  |-  ( A C_ ( B X. _V ) -> ( A \ ( C i^i ( B X. _V ) ) ) = ( ( A \ C ) u. (/) ) ) | 
						
							| 11 |  | un0 |  |-  ( ( A \ C ) u. (/) ) = ( A \ C ) | 
						
							| 12 | 10 11 | eqtrdi |  |-  ( A C_ ( B X. _V ) -> ( A \ ( C i^i ( B X. _V ) ) ) = ( A \ C ) ) | 
						
							| 13 | 2 12 | eqtrid |  |-  ( A C_ ( B X. _V ) -> ( A \ ( C |` B ) ) = ( A \ C ) ) |