| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
|- ( C |` B ) = ( C i^i ( B X. _V ) ) |
| 2 |
1
|
difeq2i |
|- ( A \ ( C |` B ) ) = ( A \ ( C i^i ( B X. _V ) ) ) |
| 3 |
|
difindi |
|- ( A \ ( C i^i ( B X. _V ) ) ) = ( ( A \ C ) u. ( A \ ( B X. _V ) ) ) |
| 4 |
|
ssdif |
|- ( A C_ ( B X. _V ) -> ( A \ ( B X. _V ) ) C_ ( ( B X. _V ) \ ( B X. _V ) ) ) |
| 5 |
|
difid |
|- ( ( B X. _V ) \ ( B X. _V ) ) = (/) |
| 6 |
4 5
|
sseqtrdi |
|- ( A C_ ( B X. _V ) -> ( A \ ( B X. _V ) ) C_ (/) ) |
| 7 |
|
ss0 |
|- ( ( A \ ( B X. _V ) ) C_ (/) -> ( A \ ( B X. _V ) ) = (/) ) |
| 8 |
6 7
|
syl |
|- ( A C_ ( B X. _V ) -> ( A \ ( B X. _V ) ) = (/) ) |
| 9 |
8
|
uneq2d |
|- ( A C_ ( B X. _V ) -> ( ( A \ C ) u. ( A \ ( B X. _V ) ) ) = ( ( A \ C ) u. (/) ) ) |
| 10 |
3 9
|
eqtrid |
|- ( A C_ ( B X. _V ) -> ( A \ ( C i^i ( B X. _V ) ) ) = ( ( A \ C ) u. (/) ) ) |
| 11 |
|
un0 |
|- ( ( A \ C ) u. (/) ) = ( A \ C ) |
| 12 |
10 11
|
eqtrdi |
|- ( A C_ ( B X. _V ) -> ( A \ ( C i^i ( B X. _V ) ) ) = ( A \ C ) ) |
| 13 |
2 12
|
eqtrid |
|- ( A C_ ( B X. _V ) -> ( A \ ( C |` B ) ) = ( A \ C ) ) |