| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ima0 |  |-  ( ( R \ ( A X. B ) ) " (/) ) = (/) | 
						
							| 2 |  | imaeq2 |  |-  ( C = (/) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R \ ( A X. B ) ) " (/) ) ) | 
						
							| 3 |  | imaeq2 |  |-  ( C = (/) -> ( R " C ) = ( R " (/) ) ) | 
						
							| 4 |  | ima0 |  |-  ( R " (/) ) = (/) | 
						
							| 5 | 3 4 | eqtrdi |  |-  ( C = (/) -> ( R " C ) = (/) ) | 
						
							| 6 | 5 | difeq1d |  |-  ( C = (/) -> ( ( R " C ) \ B ) = ( (/) \ B ) ) | 
						
							| 7 |  | 0dif |  |-  ( (/) \ B ) = (/) | 
						
							| 8 | 6 7 | eqtrdi |  |-  ( C = (/) -> ( ( R " C ) \ B ) = (/) ) | 
						
							| 9 | 1 2 8 | 3eqtr4a |  |-  ( C = (/) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( C C_ A /\ C = (/) ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) | 
						
							| 11 |  | uncom |  |-  ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) = ( ( ( R \ ( A X. B ) ) " C ) u. (/) ) | 
						
							| 12 |  | un0 |  |-  ( ( ( R \ ( A X. B ) ) " C ) u. (/) ) = ( ( R \ ( A X. B ) ) " C ) | 
						
							| 13 | 11 12 | eqtr2i |  |-  ( ( R \ ( A X. B ) ) " C ) = ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) | 
						
							| 14 |  | inundif |  |-  ( ( R i^i ( A X. B ) ) u. ( R \ ( A X. B ) ) ) = R | 
						
							| 15 | 14 | imaeq1i |  |-  ( ( ( R i^i ( A X. B ) ) u. ( R \ ( A X. B ) ) ) " C ) = ( R " C ) | 
						
							| 16 |  | imaundir |  |-  ( ( ( R i^i ( A X. B ) ) u. ( R \ ( A X. B ) ) ) " C ) = ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) | 
						
							| 17 | 15 16 | eqtr3i |  |-  ( R " C ) = ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) | 
						
							| 18 | 17 | difeq1i |  |-  ( ( R " C ) \ B ) = ( ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) \ B ) | 
						
							| 19 |  | difundir |  |-  ( ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) \ B ) = ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) u. ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) | 
						
							| 20 | 18 19 | eqtri |  |-  ( ( R " C ) \ B ) = ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) u. ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) | 
						
							| 21 |  | inss2 |  |-  ( R i^i ( A X. B ) ) C_ ( A X. B ) | 
						
							| 22 |  | imass1 |  |-  ( ( R i^i ( A X. B ) ) C_ ( A X. B ) -> ( ( R i^i ( A X. B ) ) " C ) C_ ( ( A X. B ) " C ) ) | 
						
							| 23 |  | ssdif |  |-  ( ( ( R i^i ( A X. B ) ) " C ) C_ ( ( A X. B ) " C ) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ ( ( ( A X. B ) " C ) \ B ) ) | 
						
							| 24 | 21 22 23 | mp2b |  |-  ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ ( ( ( A X. B ) " C ) \ B ) | 
						
							| 25 |  | xpima |  |-  ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) | 
						
							| 26 |  | incom |  |-  ( C i^i A ) = ( A i^i C ) | 
						
							| 27 |  | dfss2 |  |-  ( C C_ A <-> ( C i^i A ) = C ) | 
						
							| 28 | 27 | biimpi |  |-  ( C C_ A -> ( C i^i A ) = C ) | 
						
							| 29 | 26 28 | eqtr3id |  |-  ( C C_ A -> ( A i^i C ) = C ) | 
						
							| 30 | 29 | adantl |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( A i^i C ) = C ) | 
						
							| 31 |  | simpl |  |-  ( ( C =/= (/) /\ C C_ A ) -> C =/= (/) ) | 
						
							| 32 | 30 31 | eqnetrd |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( A i^i C ) =/= (/) ) | 
						
							| 33 |  | neneq |  |-  ( ( A i^i C ) =/= (/) -> -. ( A i^i C ) = (/) ) | 
						
							| 34 |  | iffalse |  |-  ( -. ( A i^i C ) = (/) -> if ( ( A i^i C ) = (/) , (/) , B ) = B ) | 
						
							| 35 | 32 33 34 | 3syl |  |-  ( ( C =/= (/) /\ C C_ A ) -> if ( ( A i^i C ) = (/) , (/) , B ) = B ) | 
						
							| 36 | 25 35 | eqtrid |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( A X. B ) " C ) = B ) | 
						
							| 37 | 36 | difeq1d |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( A X. B ) " C ) \ B ) = ( B \ B ) ) | 
						
							| 38 |  | difid |  |-  ( B \ B ) = (/) | 
						
							| 39 | 37 38 | eqtrdi |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( A X. B ) " C ) \ B ) = (/) ) | 
						
							| 40 | 24 39 | sseqtrid |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ (/) ) | 
						
							| 41 |  | ss0 |  |-  ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ (/) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) = (/) ) | 
						
							| 42 | 40 41 | syl |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) = (/) ) | 
						
							| 43 |  | df-ima |  |-  ( ( R \ ( A X. B ) ) " C ) = ran ( ( R \ ( A X. B ) ) |` C ) | 
						
							| 44 |  | df-res |  |-  ( ( R \ ( A X. B ) ) |` C ) = ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) | 
						
							| 45 | 44 | rneqi |  |-  ran ( ( R \ ( A X. B ) ) |` C ) = ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) | 
						
							| 46 | 43 45 | eqtri |  |-  ( ( R \ ( A X. B ) ) " C ) = ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) | 
						
							| 47 | 46 | ineq1i |  |-  ( ( ( R \ ( A X. B ) ) " C ) i^i B ) = ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) i^i B ) | 
						
							| 48 |  | xpss1 |  |-  ( C C_ A -> ( C X. _V ) C_ ( A X. _V ) ) | 
						
							| 49 |  | sslin |  |-  ( ( C X. _V ) C_ ( A X. _V ) -> ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) ) | 
						
							| 50 |  | rnss |  |-  ( ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) -> ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) ) | 
						
							| 51 | 48 49 50 | 3syl |  |-  ( C C_ A -> ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) ) | 
						
							| 52 |  | ssn0 |  |-  ( ( C C_ A /\ C =/= (/) ) -> A =/= (/) ) | 
						
							| 53 | 52 | ancoms |  |-  ( ( C =/= (/) /\ C C_ A ) -> A =/= (/) ) | 
						
							| 54 |  | inss1 |  |-  ( ( A X. _V ) i^i R ) C_ ( A X. _V ) | 
						
							| 55 |  | ssdif |  |-  ( ( ( A X. _V ) i^i R ) C_ ( A X. _V ) -> ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) C_ ( ( A X. _V ) \ ( A X. B ) ) ) | 
						
							| 56 | 54 55 | ax-mp |  |-  ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) C_ ( ( A X. _V ) \ ( A X. B ) ) | 
						
							| 57 |  | incom |  |-  ( ( A X. _V ) i^i ( R \ ( A X. B ) ) ) = ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) | 
						
							| 58 |  | indif2 |  |-  ( ( A X. _V ) i^i ( R \ ( A X. B ) ) ) = ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) | 
						
							| 59 | 57 58 | eqtr3i |  |-  ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) = ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) | 
						
							| 60 |  | difxp2 |  |-  ( A X. ( _V \ B ) ) = ( ( A X. _V ) \ ( A X. B ) ) | 
						
							| 61 | 56 59 60 | 3sstr4i |  |-  ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( A X. ( _V \ B ) ) | 
						
							| 62 |  | rnss |  |-  ( ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( A X. ( _V \ B ) ) -> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ran ( A X. ( _V \ B ) ) ) | 
						
							| 63 | 61 62 | mp1i |  |-  ( A =/= (/) -> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ran ( A X. ( _V \ B ) ) ) | 
						
							| 64 |  | rnxp |  |-  ( A =/= (/) -> ran ( A X. ( _V \ B ) ) = ( _V \ B ) ) | 
						
							| 65 | 63 64 | sseqtrd |  |-  ( A =/= (/) -> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( _V \ B ) ) | 
						
							| 66 |  | disj2 |  |-  ( ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) <-> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( _V \ B ) ) | 
						
							| 67 | 65 66 | sylibr |  |-  ( A =/= (/) -> ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) ) | 
						
							| 68 | 53 67 | syl |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) ) | 
						
							| 69 |  | ssdisj |  |-  ( ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) /\ ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) ) -> ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) i^i B ) = (/) ) | 
						
							| 70 | 51 68 69 | syl2an2 |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) i^i B ) = (/) ) | 
						
							| 71 | 47 70 | eqtrid |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R \ ( A X. B ) ) " C ) i^i B ) = (/) ) | 
						
							| 72 |  | disj3 |  |-  ( ( ( ( R \ ( A X. B ) ) " C ) i^i B ) = (/) <-> ( ( R \ ( A X. B ) ) " C ) = ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) | 
						
							| 73 | 71 72 | sylib |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) | 
						
							| 74 | 73 | eqcomd |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R \ ( A X. B ) ) " C ) \ B ) = ( ( R \ ( A X. B ) ) " C ) ) | 
						
							| 75 | 42 74 | uneq12d |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) u. ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) = ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) ) | 
						
							| 76 | 20 75 | eqtrid |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( R " C ) \ B ) = ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) ) | 
						
							| 77 | 13 76 | eqtr4id |  |-  ( ( C =/= (/) /\ C C_ A ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) | 
						
							| 78 | 77 | ancoms |  |-  ( ( C C_ A /\ C =/= (/) ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) | 
						
							| 79 | 10 78 | pm2.61dane |  |-  ( C C_ A -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) |