Step |
Hyp |
Ref |
Expression |
1 |
|
ima0 |
|- ( ( R \ ( A X. B ) ) " (/) ) = (/) |
2 |
|
imaeq2 |
|- ( C = (/) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R \ ( A X. B ) ) " (/) ) ) |
3 |
|
imaeq2 |
|- ( C = (/) -> ( R " C ) = ( R " (/) ) ) |
4 |
|
ima0 |
|- ( R " (/) ) = (/) |
5 |
3 4
|
eqtrdi |
|- ( C = (/) -> ( R " C ) = (/) ) |
6 |
5
|
difeq1d |
|- ( C = (/) -> ( ( R " C ) \ B ) = ( (/) \ B ) ) |
7 |
|
0dif |
|- ( (/) \ B ) = (/) |
8 |
6 7
|
eqtrdi |
|- ( C = (/) -> ( ( R " C ) \ B ) = (/) ) |
9 |
1 2 8
|
3eqtr4a |
|- ( C = (/) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) |
10 |
9
|
adantl |
|- ( ( C C_ A /\ C = (/) ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) |
11 |
|
uncom |
|- ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) = ( ( ( R \ ( A X. B ) ) " C ) u. (/) ) |
12 |
|
un0 |
|- ( ( ( R \ ( A X. B ) ) " C ) u. (/) ) = ( ( R \ ( A X. B ) ) " C ) |
13 |
11 12
|
eqtr2i |
|- ( ( R \ ( A X. B ) ) " C ) = ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) |
14 |
|
inundif |
|- ( ( R i^i ( A X. B ) ) u. ( R \ ( A X. B ) ) ) = R |
15 |
14
|
imaeq1i |
|- ( ( ( R i^i ( A X. B ) ) u. ( R \ ( A X. B ) ) ) " C ) = ( R " C ) |
16 |
|
imaundir |
|- ( ( ( R i^i ( A X. B ) ) u. ( R \ ( A X. B ) ) ) " C ) = ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) |
17 |
15 16
|
eqtr3i |
|- ( R " C ) = ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) |
18 |
17
|
difeq1i |
|- ( ( R " C ) \ B ) = ( ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) \ B ) |
19 |
|
difundir |
|- ( ( ( ( R i^i ( A X. B ) ) " C ) u. ( ( R \ ( A X. B ) ) " C ) ) \ B ) = ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) u. ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) |
20 |
18 19
|
eqtri |
|- ( ( R " C ) \ B ) = ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) u. ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) |
21 |
|
inss2 |
|- ( R i^i ( A X. B ) ) C_ ( A X. B ) |
22 |
|
imass1 |
|- ( ( R i^i ( A X. B ) ) C_ ( A X. B ) -> ( ( R i^i ( A X. B ) ) " C ) C_ ( ( A X. B ) " C ) ) |
23 |
|
ssdif |
|- ( ( ( R i^i ( A X. B ) ) " C ) C_ ( ( A X. B ) " C ) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ ( ( ( A X. B ) " C ) \ B ) ) |
24 |
21 22 23
|
mp2b |
|- ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ ( ( ( A X. B ) " C ) \ B ) |
25 |
|
xpima |
|- ( ( A X. B ) " C ) = if ( ( A i^i C ) = (/) , (/) , B ) |
26 |
|
incom |
|- ( C i^i A ) = ( A i^i C ) |
27 |
|
df-ss |
|- ( C C_ A <-> ( C i^i A ) = C ) |
28 |
27
|
biimpi |
|- ( C C_ A -> ( C i^i A ) = C ) |
29 |
26 28
|
eqtr3id |
|- ( C C_ A -> ( A i^i C ) = C ) |
30 |
29
|
adantl |
|- ( ( C =/= (/) /\ C C_ A ) -> ( A i^i C ) = C ) |
31 |
|
simpl |
|- ( ( C =/= (/) /\ C C_ A ) -> C =/= (/) ) |
32 |
30 31
|
eqnetrd |
|- ( ( C =/= (/) /\ C C_ A ) -> ( A i^i C ) =/= (/) ) |
33 |
|
neneq |
|- ( ( A i^i C ) =/= (/) -> -. ( A i^i C ) = (/) ) |
34 |
|
iffalse |
|- ( -. ( A i^i C ) = (/) -> if ( ( A i^i C ) = (/) , (/) , B ) = B ) |
35 |
32 33 34
|
3syl |
|- ( ( C =/= (/) /\ C C_ A ) -> if ( ( A i^i C ) = (/) , (/) , B ) = B ) |
36 |
25 35
|
eqtrid |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( A X. B ) " C ) = B ) |
37 |
36
|
difeq1d |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( A X. B ) " C ) \ B ) = ( B \ B ) ) |
38 |
|
difid |
|- ( B \ B ) = (/) |
39 |
37 38
|
eqtrdi |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( A X. B ) " C ) \ B ) = (/) ) |
40 |
24 39
|
sseqtrid |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ (/) ) |
41 |
|
ss0 |
|- ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) C_ (/) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) = (/) ) |
42 |
40 41
|
syl |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R i^i ( A X. B ) ) " C ) \ B ) = (/) ) |
43 |
|
df-ima |
|- ( ( R \ ( A X. B ) ) " C ) = ran ( ( R \ ( A X. B ) ) |` C ) |
44 |
|
df-res |
|- ( ( R \ ( A X. B ) ) |` C ) = ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) |
45 |
44
|
rneqi |
|- ran ( ( R \ ( A X. B ) ) |` C ) = ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) |
46 |
43 45
|
eqtri |
|- ( ( R \ ( A X. B ) ) " C ) = ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) |
47 |
46
|
ineq1i |
|- ( ( ( R \ ( A X. B ) ) " C ) i^i B ) = ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) i^i B ) |
48 |
|
xpss1 |
|- ( C C_ A -> ( C X. _V ) C_ ( A X. _V ) ) |
49 |
|
sslin |
|- ( ( C X. _V ) C_ ( A X. _V ) -> ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) ) |
50 |
|
rnss |
|- ( ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) -> ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) ) |
51 |
48 49 50
|
3syl |
|- ( C C_ A -> ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) ) |
52 |
|
ssn0 |
|- ( ( C C_ A /\ C =/= (/) ) -> A =/= (/) ) |
53 |
52
|
ancoms |
|- ( ( C =/= (/) /\ C C_ A ) -> A =/= (/) ) |
54 |
|
inss1 |
|- ( ( A X. _V ) i^i R ) C_ ( A X. _V ) |
55 |
|
ssdif |
|- ( ( ( A X. _V ) i^i R ) C_ ( A X. _V ) -> ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) C_ ( ( A X. _V ) \ ( A X. B ) ) ) |
56 |
54 55
|
ax-mp |
|- ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) C_ ( ( A X. _V ) \ ( A X. B ) ) |
57 |
|
incom |
|- ( ( A X. _V ) i^i ( R \ ( A X. B ) ) ) = ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) |
58 |
|
indif2 |
|- ( ( A X. _V ) i^i ( R \ ( A X. B ) ) ) = ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) |
59 |
57 58
|
eqtr3i |
|- ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) = ( ( ( A X. _V ) i^i R ) \ ( A X. B ) ) |
60 |
|
difxp2 |
|- ( A X. ( _V \ B ) ) = ( ( A X. _V ) \ ( A X. B ) ) |
61 |
56 59 60
|
3sstr4i |
|- ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( A X. ( _V \ B ) ) |
62 |
|
rnss |
|- ( ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( A X. ( _V \ B ) ) -> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ran ( A X. ( _V \ B ) ) ) |
63 |
61 62
|
mp1i |
|- ( A =/= (/) -> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ran ( A X. ( _V \ B ) ) ) |
64 |
|
rnxp |
|- ( A =/= (/) -> ran ( A X. ( _V \ B ) ) = ( _V \ B ) ) |
65 |
63 64
|
sseqtrd |
|- ( A =/= (/) -> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( _V \ B ) ) |
66 |
|
disj2 |
|- ( ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) <-> ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) C_ ( _V \ B ) ) |
67 |
65 66
|
sylibr |
|- ( A =/= (/) -> ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) ) |
68 |
53 67
|
syl |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) ) |
69 |
|
ssdisj |
|- ( ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) C_ ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) /\ ( ran ( ( R \ ( A X. B ) ) i^i ( A X. _V ) ) i^i B ) = (/) ) -> ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) i^i B ) = (/) ) |
70 |
51 68 69
|
syl2an2 |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ran ( ( R \ ( A X. B ) ) i^i ( C X. _V ) ) i^i B ) = (/) ) |
71 |
47 70
|
eqtrid |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R \ ( A X. B ) ) " C ) i^i B ) = (/) ) |
72 |
|
disj3 |
|- ( ( ( ( R \ ( A X. B ) ) " C ) i^i B ) = (/) <-> ( ( R \ ( A X. B ) ) " C ) = ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) |
73 |
71 72
|
sylib |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) |
74 |
73
|
eqcomd |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( R \ ( A X. B ) ) " C ) \ B ) = ( ( R \ ( A X. B ) ) " C ) ) |
75 |
42 74
|
uneq12d |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( ( ( R i^i ( A X. B ) ) " C ) \ B ) u. ( ( ( R \ ( A X. B ) ) " C ) \ B ) ) = ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) ) |
76 |
20 75
|
eqtrid |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( R " C ) \ B ) = ( (/) u. ( ( R \ ( A X. B ) ) " C ) ) ) |
77 |
13 76
|
eqtr4id |
|- ( ( C =/= (/) /\ C C_ A ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) |
78 |
77
|
ancoms |
|- ( ( C C_ A /\ C =/= (/) ) -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) |
79 |
10 78
|
pm2.61dane |
|- ( C C_ A -> ( ( R \ ( A X. B ) ) " C ) = ( ( R " C ) \ B ) ) |