Step |
Hyp |
Ref |
Expression |
1 |
|
ima0 |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ ∅ ) = ∅ |
2 |
|
imaeq2 |
⊢ ( 𝐶 = ∅ → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ ∅ ) ) |
3 |
|
imaeq2 |
⊢ ( 𝐶 = ∅ → ( 𝑅 “ 𝐶 ) = ( 𝑅 “ ∅ ) ) |
4 |
|
ima0 |
⊢ ( 𝑅 “ ∅ ) = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( 𝐶 = ∅ → ( 𝑅 “ 𝐶 ) = ∅ ) |
6 |
5
|
difeq1d |
⊢ ( 𝐶 = ∅ → ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) = ( ∅ ∖ 𝐵 ) ) |
7 |
|
0dif |
⊢ ( ∅ ∖ 𝐵 ) = ∅ |
8 |
6 7
|
eqtrdi |
⊢ ( 𝐶 = ∅ → ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) = ∅ ) |
9 |
1 2 8
|
3eqtr4a |
⊢ ( 𝐶 = ∅ → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐶 = ∅ ) → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) ) |
11 |
|
uncom |
⊢ ( ∅ ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) = ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∪ ∅ ) |
12 |
|
un0 |
⊢ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∪ ∅ ) = ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) |
13 |
11 12
|
eqtr2i |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ∅ ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) |
14 |
|
inundif |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∪ ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ) = 𝑅 |
15 |
14
|
imaeq1i |
⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∪ ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ) “ 𝐶 ) = ( 𝑅 “ 𝐶 ) |
16 |
|
imaundir |
⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ∪ ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ) “ 𝐶 ) = ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) |
17 |
15 16
|
eqtr3i |
⊢ ( 𝑅 “ 𝐶 ) = ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) |
18 |
17
|
difeq1i |
⊢ ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) = ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) ∖ 𝐵 ) |
19 |
|
difundir |
⊢ ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) ∖ 𝐵 ) = ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ∪ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ) |
20 |
18 19
|
eqtri |
⊢ ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) = ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ∪ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ) |
21 |
|
inss2 |
⊢ ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) |
22 |
|
imass1 |
⊢ ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) ⊆ ( 𝐴 × 𝐵 ) → ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ⊆ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) ) |
23 |
|
ssdif |
⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ⊆ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ⊆ ( ( ( 𝐴 × 𝐵 ) “ 𝐶 ) ∖ 𝐵 ) ) |
24 |
21 22 23
|
mp2b |
⊢ ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ⊆ ( ( ( 𝐴 × 𝐵 ) “ 𝐶 ) ∖ 𝐵 ) |
25 |
|
xpima |
⊢ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = if ( ( 𝐴 ∩ 𝐶 ) = ∅ , ∅ , 𝐵 ) |
26 |
|
incom |
⊢ ( 𝐶 ∩ 𝐴 ) = ( 𝐴 ∩ 𝐶 ) |
27 |
|
df-ss |
⊢ ( 𝐶 ⊆ 𝐴 ↔ ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
28 |
27
|
biimpi |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 ∩ 𝐴 ) = 𝐶 ) |
29 |
26 28
|
eqtr3id |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
30 |
29
|
adantl |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐶 ) = 𝐶 ) |
31 |
|
simpl |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → 𝐶 ≠ ∅ ) |
32 |
30 31
|
eqnetrd |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( 𝐴 ∩ 𝐶 ) ≠ ∅ ) |
33 |
|
neneq |
⊢ ( ( 𝐴 ∩ 𝐶 ) ≠ ∅ → ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ) |
34 |
|
iffalse |
⊢ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ → if ( ( 𝐴 ∩ 𝐶 ) = ∅ , ∅ , 𝐵 ) = 𝐵 ) |
35 |
32 33 34
|
3syl |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → if ( ( 𝐴 ∩ 𝐶 ) = ∅ , ∅ , 𝐵 ) = 𝐵 ) |
36 |
25 35
|
eqtrid |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = 𝐵 ) |
37 |
36
|
difeq1d |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐴 × 𝐵 ) “ 𝐶 ) ∖ 𝐵 ) = ( 𝐵 ∖ 𝐵 ) ) |
38 |
|
difid |
⊢ ( 𝐵 ∖ 𝐵 ) = ∅ |
39 |
37 38
|
eqtrdi |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝐴 × 𝐵 ) “ 𝐶 ) ∖ 𝐵 ) = ∅ ) |
40 |
24 39
|
sseqtrid |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ⊆ ∅ ) |
41 |
|
ss0 |
⊢ ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ⊆ ∅ → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) = ∅ ) |
42 |
40 41
|
syl |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) = ∅ ) |
43 |
|
df-ima |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ↾ 𝐶 ) |
44 |
|
df-res |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ↾ 𝐶 ) = ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) |
45 |
44
|
rneqi |
⊢ ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ↾ 𝐶 ) = ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) |
46 |
43 45
|
eqtri |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) |
47 |
46
|
ineq1i |
⊢ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∩ 𝐵 ) = ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ∩ 𝐵 ) |
48 |
|
xpss1 |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 × V ) ⊆ ( 𝐴 × V ) ) |
49 |
|
sslin |
⊢ ( ( 𝐶 × V ) ⊆ ( 𝐴 × V ) → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ⊆ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ) |
50 |
|
rnss |
⊢ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ⊆ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) → ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ⊆ ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ) |
51 |
48 49 50
|
3syl |
⊢ ( 𝐶 ⊆ 𝐴 → ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ⊆ ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ) |
52 |
|
ssn0 |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
53 |
52
|
ancoms |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → 𝐴 ≠ ∅ ) |
54 |
|
inss1 |
⊢ ( ( 𝐴 × V ) ∩ 𝑅 ) ⊆ ( 𝐴 × V ) |
55 |
|
ssdif |
⊢ ( ( ( 𝐴 × V ) ∩ 𝑅 ) ⊆ ( 𝐴 × V ) → ( ( ( 𝐴 × V ) ∩ 𝑅 ) ∖ ( 𝐴 × 𝐵 ) ) ⊆ ( ( 𝐴 × V ) ∖ ( 𝐴 × 𝐵 ) ) ) |
56 |
54 55
|
ax-mp |
⊢ ( ( ( 𝐴 × V ) ∩ 𝑅 ) ∖ ( 𝐴 × 𝐵 ) ) ⊆ ( ( 𝐴 × V ) ∖ ( 𝐴 × 𝐵 ) ) |
57 |
|
incom |
⊢ ( ( 𝐴 × V ) ∩ ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ) = ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) |
58 |
|
indif2 |
⊢ ( ( 𝐴 × V ) ∩ ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ) = ( ( ( 𝐴 × V ) ∩ 𝑅 ) ∖ ( 𝐴 × 𝐵 ) ) |
59 |
57 58
|
eqtr3i |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) = ( ( ( 𝐴 × V ) ∩ 𝑅 ) ∖ ( 𝐴 × 𝐵 ) ) |
60 |
|
difxp2 |
⊢ ( 𝐴 × ( V ∖ 𝐵 ) ) = ( ( 𝐴 × V ) ∖ ( 𝐴 × 𝐵 ) ) |
61 |
56 59 60
|
3sstr4i |
⊢ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ⊆ ( 𝐴 × ( V ∖ 𝐵 ) ) |
62 |
|
rnss |
⊢ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ⊆ ( 𝐴 × ( V ∖ 𝐵 ) ) → ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ⊆ ran ( 𝐴 × ( V ∖ 𝐵 ) ) ) |
63 |
61 62
|
mp1i |
⊢ ( 𝐴 ≠ ∅ → ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ⊆ ran ( 𝐴 × ( V ∖ 𝐵 ) ) ) |
64 |
|
rnxp |
⊢ ( 𝐴 ≠ ∅ → ran ( 𝐴 × ( V ∖ 𝐵 ) ) = ( V ∖ 𝐵 ) ) |
65 |
63 64
|
sseqtrd |
⊢ ( 𝐴 ≠ ∅ → ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ⊆ ( V ∖ 𝐵 ) ) |
66 |
|
disj2 |
⊢ ( ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ∩ 𝐵 ) = ∅ ↔ ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ⊆ ( V ∖ 𝐵 ) ) |
67 |
65 66
|
sylibr |
⊢ ( 𝐴 ≠ ∅ → ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ∩ 𝐵 ) = ∅ ) |
68 |
53 67
|
syl |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ∩ 𝐵 ) = ∅ ) |
69 |
|
ssdisj |
⊢ ( ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ⊆ ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ∧ ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐴 × V ) ) ∩ 𝐵 ) = ∅ ) → ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ∩ 𝐵 ) = ∅ ) |
70 |
51 68 69
|
syl2an2 |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ran ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) ∩ ( 𝐶 × V ) ) ∩ 𝐵 ) = ∅ ) |
71 |
47 70
|
eqtrid |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∩ 𝐵 ) = ∅ ) |
72 |
|
disj3 |
⊢ ( ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∩ 𝐵 ) = ∅ ↔ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ) |
73 |
71 72
|
sylib |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ) |
74 |
73
|
eqcomd |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) = ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) |
75 |
42 74
|
uneq12d |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( ( ( 𝑅 ∩ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ∪ ( ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ∖ 𝐵 ) ) = ( ∅ ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) ) |
76 |
20 75
|
eqtrid |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) = ( ∅ ∪ ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) ) ) |
77 |
13 76
|
eqtr4id |
⊢ ( ( 𝐶 ≠ ∅ ∧ 𝐶 ⊆ 𝐴 ) → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) ) |
78 |
77
|
ancoms |
⊢ ( ( 𝐶 ⊆ 𝐴 ∧ 𝐶 ≠ ∅ ) → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) ) |
79 |
10 78
|
pm2.61dane |
⊢ ( 𝐶 ⊆ 𝐴 → ( ( 𝑅 ∖ ( 𝐴 × 𝐵 ) ) “ 𝐶 ) = ( ( 𝑅 “ 𝐶 ) ∖ 𝐵 ) ) |