| Step |
Hyp |
Ref |
Expression |
| 1 |
|
exmid |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ ∨ ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ) |
| 2 |
|
df-ima |
⊢ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ran ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) |
| 3 |
|
df-res |
⊢ ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) |
| 4 |
3
|
rneqi |
⊢ ran ( ( 𝐴 × 𝐵 ) ↾ 𝐶 ) = ran ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) |
| 5 |
2 4
|
eqtri |
⊢ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ran ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) |
| 6 |
|
inxp |
⊢ ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) = ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ V ) ) |
| 7 |
6
|
rneqi |
⊢ ran ( ( 𝐴 × 𝐵 ) ∩ ( 𝐶 × V ) ) = ran ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ V ) ) |
| 8 |
|
inv1 |
⊢ ( 𝐵 ∩ V ) = 𝐵 |
| 9 |
8
|
xpeq2i |
⊢ ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ V ) ) = ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) |
| 10 |
9
|
rneqi |
⊢ ran ( ( 𝐴 ∩ 𝐶 ) × ( 𝐵 ∩ V ) ) = ran ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) |
| 11 |
5 7 10
|
3eqtri |
⊢ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ran ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) |
| 12 |
|
xpeq1 |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = ( ∅ × 𝐵 ) ) |
| 13 |
|
0xp |
⊢ ( ∅ × 𝐵 ) = ∅ |
| 14 |
12 13
|
eqtrdi |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = ∅ ) |
| 15 |
14
|
rneqd |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ran ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = ran ∅ ) |
| 16 |
|
rn0 |
⊢ ran ∅ = ∅ |
| 17 |
15 16
|
eqtrdi |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ran ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = ∅ ) |
| 18 |
11 17
|
eqtrid |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ∅ ) |
| 19 |
18
|
ancli |
⊢ ( ( 𝐴 ∩ 𝐶 ) = ∅ → ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ∅ ) ) |
| 20 |
|
df-ne |
⊢ ( ( 𝐴 ∩ 𝐶 ) ≠ ∅ ↔ ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ) |
| 21 |
|
rnxp |
⊢ ( ( 𝐴 ∩ 𝐶 ) ≠ ∅ → ran ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = 𝐵 ) |
| 22 |
20 21
|
sylbir |
⊢ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ → ran ( ( 𝐴 ∩ 𝐶 ) × 𝐵 ) = 𝐵 ) |
| 23 |
11 22
|
eqtrid |
⊢ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ → ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = 𝐵 ) |
| 24 |
23
|
ancli |
⊢ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ → ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = 𝐵 ) ) |
| 25 |
19 24
|
orim12i |
⊢ ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∨ ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ) → ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ∅ ) ∨ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = 𝐵 ) ) ) |
| 26 |
1 25
|
ax-mp |
⊢ ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ∅ ) ∨ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = 𝐵 ) ) |
| 27 |
|
eqif |
⊢ ( ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = if ( ( 𝐴 ∩ 𝐶 ) = ∅ , ∅ , 𝐵 ) ↔ ( ( ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = ∅ ) ∨ ( ¬ ( 𝐴 ∩ 𝐶 ) = ∅ ∧ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = 𝐵 ) ) ) |
| 28 |
26 27
|
mpbir |
⊢ ( ( 𝐴 × 𝐵 ) “ 𝐶 ) = if ( ( 𝐴 ∩ 𝐶 ) = ∅ , ∅ , 𝐵 ) |