Step |
Hyp |
Ref |
Expression |
1 |
|
dmfi |
⊢ ( 𝐴 ∈ Fin → dom 𝐴 ∈ Fin ) |
2 |
|
rnfi |
⊢ ( 𝐴 ∈ Fin → ran 𝐴 ∈ Fin ) |
3 |
1 2
|
jca |
⊢ ( 𝐴 ∈ Fin → ( dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin ) ) |
4 |
|
xpfi |
⊢ ( ( dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin ) → ( dom 𝐴 × ran 𝐴 ) ∈ Fin ) |
5 |
|
relssdmrn |
⊢ ( Rel 𝐴 → 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ) |
6 |
|
ssfi |
⊢ ( ( ( dom 𝐴 × ran 𝐴 ) ∈ Fin ∧ 𝐴 ⊆ ( dom 𝐴 × ran 𝐴 ) ) → 𝐴 ∈ Fin ) |
7 |
4 5 6
|
syl2anr |
⊢ ( ( Rel 𝐴 ∧ ( dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin ) ) → 𝐴 ∈ Fin ) |
8 |
7
|
ex |
⊢ ( Rel 𝐴 → ( ( dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin ) → 𝐴 ∈ Fin ) ) |
9 |
3 8
|
impbid2 |
⊢ ( Rel 𝐴 → ( 𝐴 ∈ Fin ↔ ( dom 𝐴 ∈ Fin ∧ ran 𝐴 ∈ Fin ) ) ) |