Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
⊢ ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) |
2 |
1
|
difeq2i |
⊢ ( 𝐴 ∖ ( 𝐶 ↾ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) |
3 |
|
difindi |
⊢ ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐴 ∖ ( 𝐵 × V ) ) ) |
4 |
|
ssdif |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐵 × V ) ) ⊆ ( ( 𝐵 × V ) ∖ ( 𝐵 × V ) ) ) |
5 |
|
difid |
⊢ ( ( 𝐵 × V ) ∖ ( 𝐵 × V ) ) = ∅ |
6 |
4 5
|
sseqtrdi |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐵 × V ) ) ⊆ ∅ ) |
7 |
|
ss0 |
⊢ ( ( 𝐴 ∖ ( 𝐵 × V ) ) ⊆ ∅ → ( 𝐴 ∖ ( 𝐵 × V ) ) = ∅ ) |
8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐵 × V ) ) = ∅ ) |
9 |
8
|
uneq2d |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐴 ∖ ( 𝐵 × V ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ∅ ) ) |
10 |
3 9
|
syl5eq |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ∅ ) ) |
11 |
|
un0 |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∪ ∅ ) = ( 𝐴 ∖ 𝐶 ) |
12 |
10 11
|
eqtrdi |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) = ( 𝐴 ∖ 𝐶 ) ) |
13 |
2 12
|
syl5eq |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐶 ↾ 𝐵 ) ) = ( 𝐴 ∖ 𝐶 ) ) |