| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-res |
⊢ ( 𝐶 ↾ 𝐵 ) = ( 𝐶 ∩ ( 𝐵 × V ) ) |
| 2 |
1
|
difeq2i |
⊢ ( 𝐴 ∖ ( 𝐶 ↾ 𝐵 ) ) = ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) |
| 3 |
|
difindi |
⊢ ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐴 ∖ ( 𝐵 × V ) ) ) |
| 4 |
|
ssdif |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐵 × V ) ) ⊆ ( ( 𝐵 × V ) ∖ ( 𝐵 × V ) ) ) |
| 5 |
|
difid |
⊢ ( ( 𝐵 × V ) ∖ ( 𝐵 × V ) ) = ∅ |
| 6 |
4 5
|
sseqtrdi |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐵 × V ) ) ⊆ ∅ ) |
| 7 |
|
ss0 |
⊢ ( ( 𝐴 ∖ ( 𝐵 × V ) ) ⊆ ∅ → ( 𝐴 ∖ ( 𝐵 × V ) ) = ∅ ) |
| 8 |
6 7
|
syl |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐵 × V ) ) = ∅ ) |
| 9 |
8
|
uneq2d |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( ( 𝐴 ∖ 𝐶 ) ∪ ( 𝐴 ∖ ( 𝐵 × V ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ∅ ) ) |
| 10 |
3 9
|
eqtrid |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) = ( ( 𝐴 ∖ 𝐶 ) ∪ ∅ ) ) |
| 11 |
|
un0 |
⊢ ( ( 𝐴 ∖ 𝐶 ) ∪ ∅ ) = ( 𝐴 ∖ 𝐶 ) |
| 12 |
10 11
|
eqtrdi |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐶 ∩ ( 𝐵 × V ) ) ) = ( 𝐴 ∖ 𝐶 ) ) |
| 13 |
2 12
|
eqtrid |
⊢ ( 𝐴 ⊆ ( 𝐵 × V ) → ( 𝐴 ∖ ( 𝐶 ↾ 𝐵 ) ) = ( 𝐴 ∖ 𝐶 ) ) |