| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res | ⊢ ( 𝐶  ↾  𝐵 )  =  ( 𝐶  ∩  ( 𝐵  ×  V ) ) | 
						
							| 2 | 1 | difeq2i | ⊢ ( 𝐴  ∖  ( 𝐶  ↾  𝐵 ) )  =  ( 𝐴  ∖  ( 𝐶  ∩  ( 𝐵  ×  V ) ) ) | 
						
							| 3 |  | difindi | ⊢ ( 𝐴  ∖  ( 𝐶  ∩  ( 𝐵  ×  V ) ) )  =  ( ( 𝐴  ∖  𝐶 )  ∪  ( 𝐴  ∖  ( 𝐵  ×  V ) ) ) | 
						
							| 4 |  | ssdif | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( 𝐴  ∖  ( 𝐵  ×  V ) )  ⊆  ( ( 𝐵  ×  V )  ∖  ( 𝐵  ×  V ) ) ) | 
						
							| 5 |  | difid | ⊢ ( ( 𝐵  ×  V )  ∖  ( 𝐵  ×  V ) )  =  ∅ | 
						
							| 6 | 4 5 | sseqtrdi | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( 𝐴  ∖  ( 𝐵  ×  V ) )  ⊆  ∅ ) | 
						
							| 7 |  | ss0 | ⊢ ( ( 𝐴  ∖  ( 𝐵  ×  V ) )  ⊆  ∅  →  ( 𝐴  ∖  ( 𝐵  ×  V ) )  =  ∅ ) | 
						
							| 8 | 6 7 | syl | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( 𝐴  ∖  ( 𝐵  ×  V ) )  =  ∅ ) | 
						
							| 9 | 8 | uneq2d | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( ( 𝐴  ∖  𝐶 )  ∪  ( 𝐴  ∖  ( 𝐵  ×  V ) ) )  =  ( ( 𝐴  ∖  𝐶 )  ∪  ∅ ) ) | 
						
							| 10 | 3 9 | eqtrid | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( 𝐴  ∖  ( 𝐶  ∩  ( 𝐵  ×  V ) ) )  =  ( ( 𝐴  ∖  𝐶 )  ∪  ∅ ) ) | 
						
							| 11 |  | un0 | ⊢ ( ( 𝐴  ∖  𝐶 )  ∪  ∅ )  =  ( 𝐴  ∖  𝐶 ) | 
						
							| 12 | 10 11 | eqtrdi | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( 𝐴  ∖  ( 𝐶  ∩  ( 𝐵  ×  V ) ) )  =  ( 𝐴  ∖  𝐶 ) ) | 
						
							| 13 | 2 12 | eqtrid | ⊢ ( 𝐴  ⊆  ( 𝐵  ×  V )  →  ( 𝐴  ∖  ( 𝐶  ↾  𝐵 ) )  =  ( 𝐴  ∖  𝐶 ) ) |