Description: Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 . (Contributed by Peter Mazsa, 17-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | partim | ⊢ ( 𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | partim2 | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) | |
2 | dfpart2 | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
3 | dferALTV2 | ⊢ ( ≀ 𝑅 ErALTV 𝐴 ↔ ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) | |
4 | 1 2 3 | 3imtr4i | ⊢ ( 𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴 ) |