Metamath Proof Explorer


Theorem partim

Description: Partition implies equivalence relation by the cosets of the relation on its natural domain, cf. partim2 . (Contributed by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion partim ( 𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴 )

Proof

Step Hyp Ref Expression
1 partim2 ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )
2 dfpart2 ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
3 dferALTV2 ( ≀ 𝑅 ErALTV 𝐴 ↔ ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )
4 1 2 3 3imtr4i ( 𝑅 Part 𝐴 → ≀ 𝑅 ErALTV 𝐴 )