Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim . Lemma for petlem . (Contributed by Peter Mazsa, 17-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | partim2 | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjim | ⊢ ( Disj 𝑅 → EqvRel ≀ 𝑅 ) | |
| 2 | 1 | adantr | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → EqvRel ≀ 𝑅 ) |
| 3 | disjdmqseq | ⊢ ( Disj 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) | |
| 4 | 3 | biimpa | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) |
| 5 | 2 4 | jca | ⊢ ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 / ≀ 𝑅 ) = 𝐴 ) ) |