Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
pexmidlem.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
pexmidlem.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
pexmidlem.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
pexmidlem.o |
⊢ ⊥ = ( ⊥𝑃 ‘ 𝐾 ) |
6 |
|
pexmidlem.m |
⊢ 𝑀 = ( 𝑋 + { 𝑝 } ) |
7 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝐾 ∈ HL ) |
8 |
7
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝐾 ∈ Lat ) |
9 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑋 ⊆ 𝐴 ) |
10 |
3 5
|
polssatN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
11 |
7 9 10
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) |
12 |
|
simpr1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑟 ∈ 𝑋 ) |
13 |
|
simpr2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) |
14 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑝 ∈ 𝐴 ) |
15 |
|
simpr3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) |
16 |
1 2 3 4
|
elpaddri |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ ( ⊥ ‘ 𝑋 ) ⊆ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ) ∧ ( 𝑝 ∈ 𝐴 ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |
17 |
8 9 11 12 13 14 15 16
|
syl322anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑝 ∈ 𝐴 ) ∧ ( 𝑟 ∈ 𝑋 ∧ 𝑞 ∈ ( ⊥ ‘ 𝑋 ) ∧ 𝑝 ≤ ( 𝑟 ∨ 𝑞 ) ) ) → 𝑝 ∈ ( 𝑋 + ( ⊥ ‘ 𝑋 ) ) ) |