Step |
Hyp |
Ref |
Expression |
1 |
|
pexmidlem.l |
|- .<_ = ( le ` K ) |
2 |
|
pexmidlem.j |
|- .\/ = ( join ` K ) |
3 |
|
pexmidlem.a |
|- A = ( Atoms ` K ) |
4 |
|
pexmidlem.p |
|- .+ = ( +P ` K ) |
5 |
|
pexmidlem.o |
|- ._|_ = ( _|_P ` K ) |
6 |
|
pexmidlem.m |
|- M = ( X .+ { p } ) |
7 |
|
simpl1 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> K e. HL ) |
8 |
7
|
hllatd |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> K e. Lat ) |
9 |
|
simpl2 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> X C_ A ) |
10 |
3 5
|
polssatN |
|- ( ( K e. HL /\ X C_ A ) -> ( ._|_ ` X ) C_ A ) |
11 |
7 9 10
|
syl2anc |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> ( ._|_ ` X ) C_ A ) |
12 |
|
simpr1 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> r e. X ) |
13 |
|
simpr2 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> q e. ( ._|_ ` X ) ) |
14 |
|
simpl3 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> p e. A ) |
15 |
|
simpr3 |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> p .<_ ( r .\/ q ) ) |
16 |
1 2 3 4
|
elpaddri |
|- ( ( ( K e. Lat /\ X C_ A /\ ( ._|_ ` X ) C_ A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) ) /\ ( p e. A /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ ( ._|_ ` X ) ) ) |
17 |
8 9 11 12 13 14 15 16
|
syl322anc |
|- ( ( ( K e. HL /\ X C_ A /\ p e. A ) /\ ( r e. X /\ q e. ( ._|_ ` X ) /\ p .<_ ( r .\/ q ) ) ) -> p e. ( X .+ ( ._|_ ` X ) ) ) |