| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxval | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0 )  →  ( 𝑊  prefix  𝐿 )  =  ( 𝑊  substr  〈 0 ,  𝐿 〉 ) ) | 
						
							| 2 | 1 | 3adant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  prefix  𝐿 )  =  ( 𝑊  substr  〈 0 ,  𝐿 〉 ) ) | 
						
							| 3 |  | simp1 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 4 |  | 0zd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  0  ∈  ℤ ) | 
						
							| 5 |  | nn0z | ⊢ ( 𝐿  ∈  ℕ0  →  𝐿  ∈  ℤ ) | 
						
							| 6 | 5 | 3ad2ant2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  𝐿  ∈  ℤ ) | 
						
							| 7 | 3 4 6 | 3jca | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  ∈  Word  𝑉  ∧  0  ∈  ℤ  ∧  𝐿  ∈  ℤ ) ) | 
						
							| 8 |  | 3mix3 | ⊢ ( ( ♯ ‘ 𝑊 )  <  𝐿  →  ( 0  <  0  ∨  𝐿  ≤  0  ∨  ( ♯ ‘ 𝑊 )  <  𝐿 ) ) | 
						
							| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 0  <  0  ∨  𝐿  ≤  0  ∨  ( ♯ ‘ 𝑊 )  <  𝐿 ) ) | 
						
							| 10 |  | swrdnd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  0  ∈  ℤ  ∧  𝐿  ∈  ℤ )  →  ( ( 0  <  0  ∨  𝐿  ≤  0  ∨  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  substr  〈 0 ,  𝐿 〉 )  =  ∅ ) ) | 
						
							| 11 | 7 9 10 | sylc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  substr  〈 0 ,  𝐿 〉 )  =  ∅ ) | 
						
							| 12 | 2 11 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝐿  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  <  𝐿 )  →  ( 𝑊  prefix  𝐿 )  =  ∅ ) |