| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pfxval |  |-  ( ( W e. Word V /\ L e. NN0 ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) | 
						
							| 2 | 1 | 3adant3 |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W prefix L ) = ( W substr <. 0 , L >. ) ) | 
						
							| 3 |  | simp1 |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> W e. Word V ) | 
						
							| 4 |  | 0zd |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> 0 e. ZZ ) | 
						
							| 5 |  | nn0z |  |-  ( L e. NN0 -> L e. ZZ ) | 
						
							| 6 | 5 | 3ad2ant2 |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> L e. ZZ ) | 
						
							| 7 | 3 4 6 | 3jca |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W e. Word V /\ 0 e. ZZ /\ L e. ZZ ) ) | 
						
							| 8 |  | 3mix3 |  |-  ( ( # ` W ) < L -> ( 0 < 0 \/ L <_ 0 \/ ( # ` W ) < L ) ) | 
						
							| 9 | 8 | 3ad2ant3 |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( 0 < 0 \/ L <_ 0 \/ ( # ` W ) < L ) ) | 
						
							| 10 |  | swrdnd |  |-  ( ( W e. Word V /\ 0 e. ZZ /\ L e. ZZ ) -> ( ( 0 < 0 \/ L <_ 0 \/ ( # ` W ) < L ) -> ( W substr <. 0 , L >. ) = (/) ) ) | 
						
							| 11 | 7 9 10 | sylc |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W substr <. 0 , L >. ) = (/) ) | 
						
							| 12 | 2 11 | eqtrd |  |-  ( ( W e. Word V /\ L e. NN0 /\ ( # ` W ) < L ) -> ( W prefix L ) = (/) ) |