| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-nel |
⊢ ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 2 |
1
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 3 |
|
elfz2nn0 |
⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 4 |
3
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 5 |
4
|
notbid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 6 |
|
3ianor |
⊢ ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 7 |
6
|
a1i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 8 |
2 5 7
|
3bitrd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 |
|
3orrot |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ↔ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) |
| 10 |
|
3orass |
⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ↔ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) ) |
| 11 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 12 |
11
|
pm2.24d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 13 |
12
|
com12 |
⊢ ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑊 ∈ V ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℕ0 ) |
| 15 |
|
pfxnndmnd |
⊢ ( ¬ ( 𝑊 ∈ V ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |
| 16 |
14 15
|
nsyl5 |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 prefix 𝐿 ) = ∅ ) |
| 17 |
16
|
a1d |
⊢ ( ¬ 𝐿 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 18 |
|
notnotb |
⊢ ( 𝐿 ∈ ℕ0 ↔ ¬ ¬ 𝐿 ∈ ℕ0 ) |
| 19 |
11
|
nn0red |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℝ ) |
| 20 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
| 21 |
|
ltnle |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 22 |
19 20 21
|
syl2an |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 ↔ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) |
| 23 |
|
pfxnd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) < 𝐿 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |
| 24 |
23
|
3expia |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) < 𝐿 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 25 |
22 24
|
sylbird |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 26 |
25
|
expcom |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
| 27 |
26
|
com23 |
⊢ ( 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
| 28 |
18 27
|
sylbir |
⊢ ( ¬ ¬ 𝐿 ∈ ℕ0 → ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) ) |
| 29 |
28
|
imp |
⊢ ( ( ¬ ¬ 𝐿 ∈ ℕ0 ∧ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 30 |
17 29
|
jaoi3 |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 31 |
30
|
orcoms |
⊢ ( ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 32 |
13 31
|
jaoi |
⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ( ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 33 |
10 32
|
sylbi |
⊢ ( ( ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ∨ ¬ 𝐿 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 34 |
9 33
|
sylbi |
⊢ ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 35 |
34
|
com12 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ( ¬ 𝐿 ∈ ℕ0 ∨ ¬ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∨ ¬ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 36 |
8 35
|
sylbid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) ) |
| 37 |
36
|
imp |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∉ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ∅ ) |