| Step |
Hyp |
Ref |
Expression |
| 1 |
|
phpar.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
| 2 |
|
phpar.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
| 3 |
|
phpar.4 |
⊢ 𝑆 = ( ·𝑠OLD ‘ 𝑈 ) |
| 4 |
|
phpar.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
| 5 |
2
|
fvexi |
⊢ 𝐺 ∈ V |
| 6 |
3
|
fvexi |
⊢ 𝑆 ∈ V |
| 7 |
4
|
fvexi |
⊢ 𝑁 ∈ V |
| 8 |
5 6 7
|
3pm3.2i |
⊢ ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) |
| 9 |
2 3 4
|
phop |
⊢ ( 𝑈 ∈ CPreHilOLD → 𝑈 = 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ) |
| 10 |
9
|
eleq1d |
⊢ ( 𝑈 ∈ CPreHilOLD → ( 𝑈 ∈ CPreHilOLD ↔ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ) ) |
| 11 |
10
|
ibi |
⊢ ( 𝑈 ∈ CPreHilOLD → 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ) |
| 12 |
1 2
|
bafval |
⊢ 𝑋 = ran 𝐺 |
| 13 |
12
|
isphg |
⊢ ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) → ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ↔ ( 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ NrmCVec ∧ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) ) |
| 14 |
13
|
simplbda |
⊢ ( ( ( 𝐺 ∈ V ∧ 𝑆 ∈ V ∧ 𝑁 ∈ V ) ∧ 〈 〈 𝐺 , 𝑆 〉 , 𝑁 〉 ∈ CPreHilOLD ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 15 |
8 11 14
|
sylancr |
⊢ ( 𝑈 ∈ CPreHilOLD → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 17 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ) |
| 18 |
17
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) ) |
| 19 |
|
fvoveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ) |
| 20 |
19
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) |
| 21 |
18 20
|
oveq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) ) |
| 22 |
|
fveq2 |
⊢ ( 𝑥 = 𝐴 → ( 𝑁 ‘ 𝑥 ) = ( 𝑁 ‘ 𝐴 ) ) |
| 23 |
22
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
| 24 |
23
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) |
| 25 |
24
|
oveq2d |
⊢ ( 𝑥 = 𝐴 → ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) |
| 26 |
21 25
|
eqeq12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ) ) |
| 27 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 𝑦 ) = ( 𝐴 𝐺 𝐵 ) ) |
| 28 |
27
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ) |
| 29 |
28
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
| 30 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( - 1 𝑆 𝑦 ) = ( - 1 𝑆 𝐵 ) ) |
| 31 |
30
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) = ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) |
| 32 |
31
|
fveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) = ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) |
| 34 |
29 33
|
oveq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝑁 ‘ 𝑦 ) = ( 𝑁 ‘ 𝐵 ) ) |
| 36 |
35
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |
| 38 |
37
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |
| 39 |
34 38
|
eqeq12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) ↔ ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 40 |
26 39
|
rspc2v |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 41 |
40
|
3adant1 |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( ( 𝑁 ‘ ( 𝑥 𝐺 𝑦 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝑥 𝐺 ( - 1 𝑆 𝑦 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝑥 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝑦 ) ↑ 2 ) ) ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) ) |
| 42 |
16 41
|
mpd |
⊢ ( ( 𝑈 ∈ CPreHilOLD ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) + ( ( 𝑁 ‘ ( 𝐴 𝐺 ( - 1 𝑆 𝐵 ) ) ) ↑ 2 ) ) = ( 2 · ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) ) |