Metamath Proof Explorer


Theorem pjhtheu

Description: Projection Theorem: Any Hilbert space vector A can be decomposed uniquely into a member x of a closed subspace H and a member y of the complement of the subspace. Theorem 3.7(i) of Beran p. 102. See pjhtheu2 for the uniqueness of y . (Contributed by NM, 23-Oct-1999) (Revised by Mario Carneiro, 14-May-2014) (New usage is discouraged.)

Ref Expression
Assertion pjhtheu ( ( 𝐻C𝐴 ∈ ℋ ) → ∃! 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )

Proof

Step Hyp Ref Expression
1 pjhth ( 𝐻C → ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) = ℋ )
2 1 eleq2d ( 𝐻C → ( 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ 𝐴 ∈ ℋ ) )
3 chsh ( 𝐻C𝐻S )
4 shocsh ( 𝐻S → ( ⊥ ‘ 𝐻 ) ∈ S )
5 shsel ( ( 𝐻S ∧ ( ⊥ ‘ 𝐻 ) ∈ S ) → ( 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
6 3 4 5 syl2anc2 ( 𝐻C → ( 𝐴 ∈ ( 𝐻 + ( ⊥ ‘ 𝐻 ) ) ↔ ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
7 2 6 bitr3d ( 𝐻C → ( 𝐴 ∈ ℋ ↔ ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
8 7 biimpa ( ( 𝐻C𝐴 ∈ ℋ ) → ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )
9 3 4 syl ( 𝐻C → ( ⊥ ‘ 𝐻 ) ∈ S )
10 ocin ( 𝐻S → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0 )
11 3 10 syl ( 𝐻C → ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0 )
12 pjhthmo ( ( 𝐻S ∧ ( ⊥ ‘ 𝐻 ) ∈ S ∧ ( 𝐻 ∩ ( ⊥ ‘ 𝐻 ) ) = 0 ) → ∃* 𝑥 ( 𝑥𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
13 3 9 11 12 syl3anc ( 𝐻C → ∃* 𝑥 ( 𝑥𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
14 13 adantr ( ( 𝐻C𝐴 ∈ ℋ ) → ∃* 𝑥 ( 𝑥𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
15 reu5 ( ∃! 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ↔ ( ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ∧ ∃* 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
16 df-rmo ( ∃* 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ↔ ∃* 𝑥 ( 𝑥𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) )
17 16 anbi2i ( ( ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ∧ ∃* 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) ↔ ( ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ∧ ∃* 𝑥 ( 𝑥𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) ) )
18 15 17 bitri ( ∃! 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ↔ ( ∃ 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ∧ ∃* 𝑥 ( 𝑥𝐻 ∧ ∃ 𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) ) ) )
19 8 14 18 sylanbrc ( ( 𝐻C𝐴 ∈ ℋ ) → ∃! 𝑥𝐻𝑦 ∈ ( ⊥ ‘ 𝐻 ) 𝐴 = ( 𝑥 + 𝑦 ) )