| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pjhth | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  =   ℋ ) | 
						
							| 2 | 1 | eleq2d | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  𝐴  ∈   ℋ ) ) | 
						
							| 3 |  | chsh | ⊢ ( 𝐻  ∈   Cℋ   →  𝐻  ∈   Sℋ  ) | 
						
							| 4 |  | shocsh | ⊢ ( 𝐻  ∈   Sℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 5 |  | shsel | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  )  →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 6 | 3 4 5 | syl2anc2 | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐴  ∈  ( 𝐻  +ℋ  ( ⊥ ‘ 𝐻 ) )  ↔  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 7 | 2 6 | bitr3d | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐴  ∈   ℋ  ↔  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 8 | 7 | biimpa | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) | 
						
							| 9 | 3 4 | syl | ⊢ ( 𝐻  ∈   Cℋ   →  ( ⊥ ‘ 𝐻 )  ∈   Sℋ  ) | 
						
							| 10 |  | ocin | ⊢ ( 𝐻  ∈   Sℋ   →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ ) | 
						
							| 11 | 3 10 | syl | ⊢ ( 𝐻  ∈   Cℋ   →  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ ) | 
						
							| 12 |  | pjhthmo | ⊢ ( ( 𝐻  ∈   Sℋ   ∧  ( ⊥ ‘ 𝐻 )  ∈   Sℋ   ∧  ( 𝐻  ∩  ( ⊥ ‘ 𝐻 ) )  =  0ℋ )  →  ∃* 𝑥 ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 13 | 3 9 11 12 | syl3anc | ⊢ ( 𝐻  ∈   Cℋ   →  ∃* 𝑥 ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 14 | 13 | adantr | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃* 𝑥 ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 15 |  | reu5 | ⊢ ( ∃! 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃* 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 16 |  | df-rmo | ⊢ ( ∃* 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ↔  ∃* 𝑥 ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) | 
						
							| 17 | 16 | anbi2i | ⊢ ( ( ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃* 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) )  ↔  ( ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃* 𝑥 ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 18 | 15 17 | bitri | ⊢ ( ∃! 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ↔  ( ∃ 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 )  ∧  ∃* 𝑥 ( 𝑥  ∈  𝐻  ∧  ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) ) ) | 
						
							| 19 | 8 14 18 | sylanbrc | ⊢ ( ( 𝐻  ∈   Cℋ   ∧  𝐴  ∈   ℋ )  →  ∃! 𝑥  ∈  𝐻 ∃ 𝑦  ∈  ( ⊥ ‘ 𝐻 ) 𝐴  =  ( 𝑥  +ℎ  𝑦 ) ) |