Metamath Proof Explorer
Description: The orthomodular law. Remark in Kalmbach p. 22. (Contributed by NM, 12-Jun-2006) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
|
Assertion |
pjoml5i |
⊢ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) |
4 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
5 |
1 4
|
pjoml2i |
⊢ ( 𝐴 ⊆ ( 𝐴 ∨ℋ 𝐵 ) → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) ) |
6 |
3 5
|
ax-mp |
⊢ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( 𝐴 ∨ℋ 𝐵 ) ) ) = ( 𝐴 ∨ℋ 𝐵 ) |