| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 4 |
3 2
|
chincli |
⊢ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ |
| 5 |
1 2
|
pjoml2i |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) |
| 6 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 7 |
1 6
|
chub1i |
⊢ 𝐴 ⊆ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 8 |
1 2
|
chdmm2i |
⊢ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) |
| 9 |
7 8
|
sseqtrri |
⊢ 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) |
| 10 |
5 9
|
jctil |
⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∧ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) |
| 11 |
|
fveq2 |
⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( ⊥ ‘ 𝑥 ) = ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 12 |
11
|
sseq2d |
⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ↔ 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( 𝐴 ∨ℋ 𝑥 ) = ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ) |
| 14 |
13
|
eqeq1d |
⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ↔ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) |
| 15 |
12 14
|
anbi12d |
⊢ ( 𝑥 = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) → ( ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ↔ ( 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∧ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) ) |
| 16 |
15
|
rspcev |
⊢ ( ( ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ∈ Cℋ ∧ ( 𝐴 ⊆ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) ∧ ( 𝐴 ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = 𝐵 ) ) → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) |
| 17 |
4 10 16
|
sylancr |
⊢ ( 𝐴 ⊆ 𝐵 → ∃ 𝑥 ∈ Cℋ ( 𝐴 ⊆ ( ⊥ ‘ 𝑥 ) ∧ ( 𝐴 ∨ℋ 𝑥 ) = 𝐵 ) ) |