Step |
Hyp |
Ref |
Expression |
1 |
|
pjsdi2.1 |
⊢ 𝐻 ∈ Cℋ |
2 |
|
pjsdi2.2 |
⊢ 𝑅 : ℋ ⟶ ℋ |
3 |
|
pjsdi2.3 |
⊢ 𝑆 : ℋ ⟶ ℋ |
4 |
|
pjsdi2.4 |
⊢ 𝑇 : ℋ ⟶ ℋ |
5 |
|
coeq2 |
⊢ ( ( 𝑅 ∘ ( 𝑆 +op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) +op ( 𝑅 ∘ 𝑇 ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ ( 𝑆 +op 𝑇 ) ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( ( 𝑅 ∘ 𝑆 ) +op ( 𝑅 ∘ 𝑇 ) ) ) ) |
6 |
2 3
|
hocofi |
⊢ ( 𝑅 ∘ 𝑆 ) : ℋ ⟶ ℋ |
7 |
2 4
|
hocofi |
⊢ ( 𝑅 ∘ 𝑇 ) : ℋ ⟶ ℋ |
8 |
1 6 7
|
pjsdii |
⊢ ( ( projℎ ‘ 𝐻 ) ∘ ( ( 𝑅 ∘ 𝑆 ) +op ( 𝑅 ∘ 𝑇 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑆 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑇 ) ) ) |
9 |
5 8
|
eqtrdi |
⊢ ( ( 𝑅 ∘ ( 𝑆 +op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) +op ( 𝑅 ∘ 𝑇 ) ) → ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ ( 𝑆 +op 𝑇 ) ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑆 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑇 ) ) ) ) |
10 |
|
coass |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ ( 𝑆 +op 𝑇 ) ) = ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ ( 𝑆 +op 𝑇 ) ) ) |
11 |
|
coass |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ 𝑆 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑆 ) ) |
12 |
|
coass |
⊢ ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ 𝑇 ) = ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑇 ) ) |
13 |
11 12
|
oveq12i |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ 𝑆 ) +op ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ 𝑇 ) ) = ( ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑆 ) ) +op ( ( projℎ ‘ 𝐻 ) ∘ ( 𝑅 ∘ 𝑇 ) ) ) |
14 |
9 10 13
|
3eqtr4g |
⊢ ( ( 𝑅 ∘ ( 𝑆 +op 𝑇 ) ) = ( ( 𝑅 ∘ 𝑆 ) +op ( 𝑅 ∘ 𝑇 ) ) → ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ ( 𝑆 +op 𝑇 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ 𝑆 ) +op ( ( ( projℎ ‘ 𝐻 ) ∘ 𝑅 ) ∘ 𝑇 ) ) ) |