| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispnrm | ⊢ ( 𝐽  ∈  PNrm  ↔  ( 𝐽  ∈  Nrm  ∧  ( Clsd ‘ 𝐽 )  ⊆  ran  ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 ) ) ) | 
						
							| 2 | 1 | simprbi | ⊢ ( 𝐽  ∈  PNrm  →  ( Clsd ‘ 𝐽 )  ⊆  ran  ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 ) ) | 
						
							| 3 | 2 | sselda | ⊢ ( ( 𝐽  ∈  PNrm  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  𝐴  ∈  ran  ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 ) ) | 
						
							| 4 |  | eqid | ⊢ ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 )  =  ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 ) | 
						
							| 5 | 4 | elrnmpt | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  ( 𝐴  ∈  ran  ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 )  ↔  ∃ 𝑓  ∈  ( 𝐽  ↑m  ℕ ) 𝐴  =  ∩  ran  𝑓 ) ) | 
						
							| 6 | 5 | adantl | ⊢ ( ( 𝐽  ∈  PNrm  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ( 𝐴  ∈  ran  ( 𝑓  ∈  ( 𝐽  ↑m  ℕ )  ↦  ∩  ran  𝑓 )  ↔  ∃ 𝑓  ∈  ( 𝐽  ↑m  ℕ ) 𝐴  =  ∩  ran  𝑓 ) ) | 
						
							| 7 | 3 6 | mpbid | ⊢ ( ( 𝐽  ∈  PNrm  ∧  𝐴  ∈  ( Clsd ‘ 𝐽 ) )  →  ∃ 𝑓  ∈  ( 𝐽  ↑m  ℕ ) 𝐴  =  ∩  ran  𝑓 ) |