| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ispnrm |  |-  ( J e. PNrm <-> ( J e. Nrm /\ ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) | 
						
							| 2 | 1 | simprbi |  |-  ( J e. PNrm -> ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) | 
						
							| 3 | 2 | sselda |  |-  ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) | 
						
							| 4 |  | eqid |  |-  ( f e. ( J ^m NN ) |-> |^| ran f ) = ( f e. ( J ^m NN ) |-> |^| ran f ) | 
						
							| 5 | 4 | elrnmpt |  |-  ( A e. ( Clsd ` J ) -> ( A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) <-> E. f e. ( J ^m NN ) A = |^| ran f ) ) | 
						
							| 6 | 5 | adantl |  |-  ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> ( A e. ran ( f e. ( J ^m NN ) |-> |^| ran f ) <-> E. f e. ( J ^m NN ) A = |^| ran f ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( ( J e. PNrm /\ A e. ( Clsd ` J ) ) -> E. f e. ( J ^m NN ) A = |^| ran f ) |