| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 |  |-  ( j = J -> ( Clsd ` j ) = ( Clsd ` J ) ) | 
						
							| 2 |  | oveq1 |  |-  ( j = J -> ( j ^m NN ) = ( J ^m NN ) ) | 
						
							| 3 | 2 | mpteq1d |  |-  ( j = J -> ( f e. ( j ^m NN ) |-> |^| ran f ) = ( f e. ( J ^m NN ) |-> |^| ran f ) ) | 
						
							| 4 | 3 | rneqd |  |-  ( j = J -> ran ( f e. ( j ^m NN ) |-> |^| ran f ) = ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) | 
						
							| 5 | 1 4 | sseq12d |  |-  ( j = J -> ( ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) <-> ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) | 
						
							| 6 |  | df-pnrm |  |-  PNrm = { j e. Nrm | ( Clsd ` j ) C_ ran ( f e. ( j ^m NN ) |-> |^| ran f ) } | 
						
							| 7 | 5 6 | elrab2 |  |-  ( J e. PNrm <-> ( J e. Nrm /\ ( Clsd ` J ) C_ ran ( f e. ( J ^m NN ) |-> |^| ran f ) ) ) |