Metamath Proof Explorer


Theorem ispnrm

Description: The property of being perfectly normal. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ispnrm JPNrmJNrmClsdJranfJranf

Proof

Step Hyp Ref Expression
1 fveq2 j=JClsdj=ClsdJ
2 oveq1 j=Jj=J
3 2 mpteq1d j=Jfjranf=fJranf
4 3 rneqd j=Jranfjranf=ranfJranf
5 1 4 sseq12d j=JClsdjranfjranfClsdJranfJranf
6 df-pnrm PNrm=jNrm|Clsdjranfjranf
7 5 6 elrab2 JPNrmJNrmClsdJranfJranf