Metamath Proof Explorer


Definition df-pnrm

Description: Define perfectly normal spaces. A space is perfectly normal if it is normal and every closed set is a G_δ set, meaning that it is a countable intersection of open sets. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion df-pnrm PNrm=jNrm|Clsdjranfjranf

Detailed syntax breakdown

Step Hyp Ref Expression
0 cpnrm classPNrm
1 vj setvarj
2 cnrm classNrm
3 ccld classClsd
4 1 cv setvarj
5 4 3 cfv classClsdj
6 vf setvarf
7 cmap class𝑚
8 cn class
9 4 8 7 co classj
10 6 cv setvarf
11 10 crn classranf
12 11 cint classranf
13 6 9 12 cmpt classfjranf
14 13 crn classranfjranf
15 5 14 wss wffClsdjranfjranf
16 15 1 2 crab classjNrm|Clsdjranfjranf
17 0 16 wceq wffPNrm=jNrm|Clsdjranfjranf