| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poirr |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 𝑅 𝑥 ) |
| 2 |
|
vex |
⊢ 𝑥 ∈ V |
| 3 |
2 2
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑥 ↔ 𝑥 𝑅 𝑥 ) |
| 4 |
1 3
|
sylnibr |
⊢ ( ( 𝑅 Po 𝐴 ∧ 𝑥 ∈ 𝐴 ) → ¬ 𝑥 ◡ 𝑅 𝑥 ) |
| 5 |
|
3anrev |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) |
| 6 |
|
potr |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑥 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑧 𝑅 𝑥 ) ) |
| 7 |
5 6
|
sylan2b |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑧 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) → 𝑧 𝑅 𝑥 ) ) |
| 8 |
|
vex |
⊢ 𝑦 ∈ V |
| 9 |
2 8
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑦 ↔ 𝑦 𝑅 𝑥 ) |
| 10 |
|
vex |
⊢ 𝑧 ∈ V |
| 11 |
8 10
|
brcnv |
⊢ ( 𝑦 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑦 ) |
| 12 |
9 11
|
anbi12ci |
⊢ ( ( 𝑥 ◡ 𝑅 𝑦 ∧ 𝑦 ◡ 𝑅 𝑧 ) ↔ ( 𝑧 𝑅 𝑦 ∧ 𝑦 𝑅 𝑥 ) ) |
| 13 |
2 10
|
brcnv |
⊢ ( 𝑥 ◡ 𝑅 𝑧 ↔ 𝑧 𝑅 𝑥 ) |
| 14 |
7 12 13
|
3imtr4g |
⊢ ( ( 𝑅 Po 𝐴 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 ◡ 𝑅 𝑦 ∧ 𝑦 ◡ 𝑅 𝑧 ) → 𝑥 ◡ 𝑅 𝑧 ) ) |
| 15 |
4 14
|
ispod |
⊢ ( 𝑅 Po 𝐴 → ◡ 𝑅 Po 𝐴 ) |