Metamath Proof Explorer


Theorem pocnv

Description: The converse of a partial ordering is still a partial ordering. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion pocnv RPoAR-1PoA

Proof

Step Hyp Ref Expression
1 poirr RPoAxA¬xRx
2 vex xV
3 2 2 brcnv xR-1xxRx
4 1 3 sylnibr RPoAxA¬xR-1x
5 3anrev xAyAzAzAyAxA
6 potr RPoAzAyAxAzRyyRxzRx
7 5 6 sylan2b RPoAxAyAzAzRyyRxzRx
8 vex yV
9 2 8 brcnv xR-1yyRx
10 vex zV
11 8 10 brcnv yR-1zzRy
12 9 11 anbi12ci xR-1yyR-1zzRyyRx
13 2 10 brcnv xR-1zzRx
14 7 12 13 3imtr4g RPoAxAyAzAxR-1yyR-1zxR-1z
15 4 14 ispod RPoAR-1PoA