Step |
Hyp |
Ref |
Expression |
1 |
|
poirr |
|- ( ( R Po A /\ x e. A ) -> -. x R x ) |
2 |
|
vex |
|- x e. _V |
3 |
2 2
|
brcnv |
|- ( x `' R x <-> x R x ) |
4 |
1 3
|
sylnibr |
|- ( ( R Po A /\ x e. A ) -> -. x `' R x ) |
5 |
|
3anrev |
|- ( ( x e. A /\ y e. A /\ z e. A ) <-> ( z e. A /\ y e. A /\ x e. A ) ) |
6 |
|
potr |
|- ( ( R Po A /\ ( z e. A /\ y e. A /\ x e. A ) ) -> ( ( z R y /\ y R x ) -> z R x ) ) |
7 |
5 6
|
sylan2b |
|- ( ( R Po A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( z R y /\ y R x ) -> z R x ) ) |
8 |
|
vex |
|- y e. _V |
9 |
2 8
|
brcnv |
|- ( x `' R y <-> y R x ) |
10 |
|
vex |
|- z e. _V |
11 |
8 10
|
brcnv |
|- ( y `' R z <-> z R y ) |
12 |
9 11
|
anbi12ci |
|- ( ( x `' R y /\ y `' R z ) <-> ( z R y /\ y R x ) ) |
13 |
2 10
|
brcnv |
|- ( x `' R z <-> z R x ) |
14 |
7 12 13
|
3imtr4g |
|- ( ( R Po A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x `' R y /\ y `' R z ) -> x `' R z ) ) |
15 |
4 14
|
ispod |
|- ( R Po A -> `' R Po A ) |