| Step |
Hyp |
Ref |
Expression |
| 1 |
|
poirr |
|- ( ( R Po A /\ x e. A ) -> -. x R x ) |
| 2 |
|
vex |
|- x e. _V |
| 3 |
2 2
|
brcnv |
|- ( x `' R x <-> x R x ) |
| 4 |
1 3
|
sylnibr |
|- ( ( R Po A /\ x e. A ) -> -. x `' R x ) |
| 5 |
|
3anrev |
|- ( ( x e. A /\ y e. A /\ z e. A ) <-> ( z e. A /\ y e. A /\ x e. A ) ) |
| 6 |
|
potr |
|- ( ( R Po A /\ ( z e. A /\ y e. A /\ x e. A ) ) -> ( ( z R y /\ y R x ) -> z R x ) ) |
| 7 |
5 6
|
sylan2b |
|- ( ( R Po A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( z R y /\ y R x ) -> z R x ) ) |
| 8 |
|
vex |
|- y e. _V |
| 9 |
2 8
|
brcnv |
|- ( x `' R y <-> y R x ) |
| 10 |
|
vex |
|- z e. _V |
| 11 |
8 10
|
brcnv |
|- ( y `' R z <-> z R y ) |
| 12 |
9 11
|
anbi12ci |
|- ( ( x `' R y /\ y `' R z ) <-> ( z R y /\ y R x ) ) |
| 13 |
2 10
|
brcnv |
|- ( x `' R z <-> z R x ) |
| 14 |
7 12 13
|
3imtr4g |
|- ( ( R Po A /\ ( x e. A /\ y e. A /\ z e. A ) ) -> ( ( x `' R y /\ y `' R z ) -> x `' R z ) ) |
| 15 |
4 14
|
ispod |
|- ( R Po A -> `' R Po A ) |