| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indifdir |
⊢ ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∖ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 2 |
|
df-pred |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑋 ) = ( ( 𝐴 ∖ 𝐵 ) ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 3 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 4 |
|
df-pred |
⊢ Pred ( 𝑅 , 𝐵 , 𝑋 ) = ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) |
| 5 |
3 4
|
difeq12i |
⊢ ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) = ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ∖ ( 𝐵 ∩ ( ◡ 𝑅 “ { 𝑋 } ) ) ) |
| 6 |
1 2 5
|
3eqtr4i |
⊢ Pred ( 𝑅 , ( 𝐴 ∖ 𝐵 ) , 𝑋 ) = ( Pred ( 𝑅 , 𝐴 , 𝑋 ) ∖ Pred ( 𝑅 , 𝐵 , 𝑋 ) ) |