Metamath Proof Explorer


Theorem preddif

Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011)

Ref Expression
Assertion preddif PredRABX=PredRAXPredRBX

Proof

Step Hyp Ref Expression
1 indifdir ABR-1X=AR-1XBR-1X
2 df-pred PredRABX=ABR-1X
3 df-pred PredRAX=AR-1X
4 df-pred PredRBX=BR-1X
5 3 4 difeq12i PredRAXPredRBX=AR-1XBR-1X
6 1 2 5 3eqtr4i PredRABX=PredRAXPredRBX