Description: Difference law for predecessor classes. (Contributed by Scott Fenton, 14-Apr-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | preddif | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indifdir | |
|
2 | df-pred | |
|
3 | df-pred | |
|
4 | df-pred | |
|
5 | 3 4 | difeq12i | |
6 | 1 2 5 | 3eqtr4i | |