Description: The value of the predecessor class over the naturals. (Contributed by Scott Fenton, 6-Aug-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | prednn | ⊢ ( 𝑁 ∈ ℕ → Pred ( < , ℕ , 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 2 | predeq2 | ⊢ ( ℕ = ( ℤ≥ ‘ 1 ) → Pred ( < , ℕ , 𝑁 ) = Pred ( < , ( ℤ≥ ‘ 1 ) , 𝑁 ) ) | |
| 3 | 1 2 | ax-mp | ⊢ Pred ( < , ℕ , 𝑁 ) = Pred ( < , ( ℤ≥ ‘ 1 ) , 𝑁 ) |
| 4 | elnnuz | ⊢ ( 𝑁 ∈ ℕ ↔ 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 5 | preduz | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 1 ) → Pred ( < , ( ℤ≥ ‘ 1 ) , 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) | |
| 6 | 4 5 | sylbi | ⊢ ( 𝑁 ∈ ℕ → Pred ( < , ( ℤ≥ ‘ 1 ) , 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |
| 7 | 3 6 | eqtrid | ⊢ ( 𝑁 ∈ ℕ → Pred ( < , ℕ , 𝑁 ) = ( 1 ... ( 𝑁 − 1 ) ) ) |